Citation: Du Zhanhong, Lu Yi, Wei Pengfei, Deng Chunshan, Li Xiaojian. Progress in Devices and Materials for Implantable Multielectrode Arrays[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 200700. doi: 10.3866/PKU.WHXB202007004 shu

Progress in Devices and Materials for Implantable Multielectrode Arrays

  • Corresponding author: Du Zhanhong, zh.du@siat.ac.cn Li Xiaojian, xj.li@siat.ac.cn
  • Received Date: 1 July 2020
    Revised Date: 11 August 2020
    Accepted Date: 11 August 2020
    Available Online: 18 August 2020

    Fund Project: the Key-Area Research and Development Program of Guangdong Province 2018B030338001the Doctoral Initiation Project of the Guangdong Province 2017A030310496the National Key R & D Program of China 2018YFA0701400the National Nature Science Foundation of China 31700936The project was supported by the Key-Area Research and Development Program of Guangdong Province (2018B030331001, 2018B030338001), the National Key R & D Program of China (2018YFA0701400, 2017YFC1310503), the National Nature Science Foundation of China (31700936), the Doctoral Initiation Project of the Guangdong Province (2017A030310496)the Key-Area Research and Development Program of Guangdong Province 2018B030331001the National Key R & D Program of China 2017YFC1310503

  • The human brain comprises over 100 billion neurons that communicate with each other via electrical activities called action potentials. Sensory perception, cognition, and behavior all emerge from these activities. Neuroengineering is a developing interdisciplinary field that employs knowledge from neurobiology, electrical and electronic engineering, materials science and engineering, computer science, and many others. Neuroengineering aims to develop tools for understanding the mechanism of brain function at the circuit level, and to further the development of neuromodulation strategy and neuroprosthetics for motor, sensory, and mental rehabilitation from disabilities and illnesses. For high spatial and temporal resolution interfacing with neurons in the brain, implantable multielectrode arrays (MEAs) are a key member of the family of neuroengineering devices, which are designed and fabricated for in vivo electrophysiology, deep brain stimulation, and brain-computer interfaces (BCIs). On the one hand, action potential recording from MEAs can indicate the subject's mental state and movement intentions, thus enabling the BCI technology to control external motor restoration devices such as robotic arms. On the other hand, neural stimulation electrodes can modulate abnormal neural activity and treat disorders like Parkinson's disease, epilepsy, and depression. The physical and chemical properties of the electrodes, nanofabrication of arrays, and electrode–tissue interface materials are all important research subjects in translational neuroscience studies, and the utilization of nanomaterials and nanodevices continuously improves neural electrode technologies. At present, neural interface technology is confronting numerous challenges and opportunities, especially for in vivo neural circuit analysis, neuroelectronic medicine, and functional neuromodulation. The development of neural interface devices eagerly demands super-high-density, mesoscopic recording, minimal invasion, biosignal stability, and wireless interfacing. Achievement of these next-generation neural interface technology capabilities requires collaboration between neuroscientists, neurosurgeons, material scientists, microelectronic engineers, and many others.
  • 加载中
    1. [1]

      Galvani, L. Bon. Sci. Art. Inst. Acad. Comm., Ex Typographia Instituti Scientiarium: Bononiae, 1791; 7, pp. 363-418. doi: 10.1001/jama.1953.02940270095033

    2. [2]

      Yawn, R.; Hunter, J. B.; Sweeney, A. D.; Bennett, M. L. F1000Prime Rep. 2015, 7, 45. doi: 10.12703/P7-45  doi: 10.12703/P7-45

    3. [3]

      McIntyre, C. C.; Chaturvedi, A.; Shamir, R. R.; Lempka, S. F. Brain Stimul. 2015, 8 (1), 21. doi: 10.1016/j.brs.2014.07.039  doi: 10.1016/j.brs.2014.07.039

    4. [4]

      Mills, J. O.; Jalil, A.; Stanga, P. E. Eye (Lond) 2017, 31 (10), 1383. doi: 10.1038/eye.2017.65  doi: 10.1038/eye.2017.65

    5. [5]

      (a) Downey, J. E.; Schwed, N.; Chase, S. M.; Schwartz, A. B.; Collinger, J. L. J. Neural Eng. 2018, 15 (4), 046016. doi: 10.1088/1741-2552/aab7a0
      (b)Collinger,J.L.;Wodlinger,B.;Downey,J.E.;Wang,W.;Tyler-Kabara,E.C.;Weber,D.J.;McMorland,A.J.;Velliste,M.;Boninger,M.L.;Schwartz,A.B.Lancet2013,381(9866),557.doi:10.1016/S0140-6736(12)61816-9

    6. [6]

      Roy, D. S.; Arons, A.; Mitchell, T. I.; Pignatelli, M.; Ryan, T. J.; Tonegawa, S. Nature 2016, 531 (7595), 508. doi: 10.1038/nature17172  doi: 10.1038/nature17172

    7. [7]

      Jorgenson, L. A.; Newsome, W.; Anderson, D. J.; Bargmann, C. I.; Brown, E. N.; Deisseroth, K.; Donoghue, J. P.; Hudson, K. L.; Ling, G. S. F.; et al. Philos. Trans. R. Soc. B-Biol. Sci. 2015, 370 (1668), 20140164. doi: 10.1098/rstb.2014.0164  doi: 10.1098/rstb.2014.0164

    8. [8]

      Reardon, S. Nature 2016, 537 (7622), 597. doi: 10.1038/nature.2016.20658  doi: 10.1038/nature.2016.20658

    9. [9]

      Musk, E. J. Med. Internet. Res. 2019, 21 (10), e16194. doi: 10.2196/16194  doi: 10.2196/16194

    10. [10]

      Buzsáki, G.; Anastassiou, C. A.; Koch, C. Nat. Rev. Neurosci. 2012, 13 (6), 407. doi: 10.1038/nrn3241  doi: 10.1038/nrn3241

    11. [11]

      Buzsáki, G. Neuron 2002, 33 (3), 325. doi: 10.1016/S0896-6273(02)00586-X  doi: 10.1016/S0896-6273(02)00586-X

    12. [12]

      (a) Yuste, R. Nat. Rev. Neurosci. 2015, 16 (8), 487. doi: 10.1038/nrn3962
      (b)Harris,K.D.;Quiroga,R.Q.;Freeman,J.;Smith,S.L.Nat.Neurosci.2016,19(9),1165.doi:10.1038/nn.4365

    13. [13]

      (a) Carter, M.; Shieh, J. Guide to Research Techniques in Neuroscience, 2nd ed.; Academic Press, 2015; pp. 39-71. doi: 10.1016/C2009-0-01891-1
      (b)Buzsáki,G.Nat.Neurosci.2004,7(5),446.doi:10.1038/nn1233

    14. [14]

      Rossant, C.; Kadir, S. N.; Goodman, D. F. M.; Schulman, J.; Hunter, M. L. D.; Saleem, A. B.; Grosmark, A.; Belluscio, M.; Denfield, G. H.; Ecker, A. S.; et al. Nat. Neurosci. 2016, 19 (4), 634. doi: 10.1038/nn.4268  doi: 10.1038/nn.4268

    15. [15]

      (a) Logothetis, N. K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Nature 2001, 412 (6843), 150. doi: 10.1038/35084005
      (b) Keller, C. J.; Chen, C.; Lado, F. A.; Khodakhah, K. PLoS ONE 2016, 11 (4), e0153154. doi:10.1371/journal.pone.0153154
      (c) Ponce, C. R.; Lomber, S. G.; Livingstone, M. S. J. Neurosci. 2017, 37 (19), 5019. doi:10.1523/JNEUROSCI.2674-16.2017

    16. [16]

      Harris, K. D.; Henze, D. A.; Csicsvari, J.; Hirase, H.; Buzsáki, G. J. Neurophys. 2000, 84 (1), 401. doi: 10.1152/jn.2000.84.1.401  doi: 10.1152/jn.2000.84.1.401

    17. [17]

      Hodgkin, A. L.; Huxley, A. F. Nature 1939, 144 (3651), 710. doi: 10.1038/144710a0  doi: 10.1038/144710a0

    18. [18]

      Hubel, D. H. Science 1957, 125 (3247), 549. doi: 10.1126/science.125.3247.549  doi: 10.1126/science.125.3247.549

    19. [19]

      Hubel, D. H.; Wiesel, T. N. J. Physiol. (Lond.) 1962, 160 (1), 106. doi: 10.1113/jphysiol.1962.sp006837  doi: 10.1113/jphysiol.1962.sp006837

    20. [20]

      McNaughton, B. L.; O'Keefe, J.; Barnes, C. A. J. Neurosci. Methods 1983, 8 (4), 391. doi: 10.1016/0165-0270(83)90097-3  doi: 10.1016/0165-0270(83)90097-3

    21. [21]

      Wise, K. D.; Angell, J. B.; Starr, A. IEEE Trans Biomed Eng. 1970, BME-17 (3), 238. doi: 10.1109/TBME.1970.4502738  doi: 10.1109/TBME.1970.4502738

    22. [22]

      Campbell, P. K.; Jones, K. E.; Normann, R. A. Biomed. Sci. Instrum. 1990, 26, 161.

    23. [23]

      (a) Liu, J.; Fu, T. M.; Cheng, Z.; Hong, G.; Zhou, T.; Jin, L.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C.; et al. Nat. Nanotechnol. 2015, 10 (7), 629. doi: 10.1038/nnano.2015.115
      (b) Hong, G.; Viveros, R. D.; Zwang, T. J.; Yang, X.; Lieber, C. M. Biochemistry 2018, 57 (27), 3995. doi:10.1021/acs.biochem.8b00122

    24. [24]

      (a) Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Nano Lett. 2012, 12 (5), 2639. doi: 10.1021/nl3011337
      (b) Scholvin, J.; Kinney, J. P.; Bernstein, J. G.; Moore-Kochlacs, C.; Kopell, N.; Fonstad, C. G.; Boyden, E. S. IEEE Trans. Biomed. Eng. 2016, 63 (1), 120.doi:10.1109/TBME.2015.2406113
      (c) Qing, Q.; Pal, S. K.; Tian, B.; Duan, X.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (5), 1882. doi:10.1073/pnas.0914737107

    25. [25]

      (a) Hubel, D. H.; Wiesel, T. N. J. Physiol. (Lond.) 1959, 148 (3), 574. doi:10.1113/jphysiol.1959.sp006308
      (b) O'Keefe, J.; Dostrovsky, J. Brain Res. 1971, 34 (1), 171. doi:10.1016/0006-8993(71)90358-1
      (c) Desimone, R.; Albright, T. D.; Gross, C. G.; Bruce, C. J. Neurosci. 1984, 4 (8), 2051. doi:10.1523/JNEUROSCI.04-08-02051.1984
      (d) Schultz, W. J. Neurophysiol. 1986, 56 (5), 1439. doi:10.1152/jn.1986.56.5.1439
      (e) Newsome, W. T.; Britten, K. H.; Movshon, J. A. Nature 1989, 341 (6237), 52. doi:10.1038/341052a0
      (f) Hafting, T.; Fyhn, M.; Molden, S.; Moser, M. B.; Moser, E. I. Nature 2005, 436 (7052), 801. doi:10.1038/nature03721
      (g) Quiroga, R. Q.; Reddy, L.; Kreiman, G.; Koch, C.; Fried, I. Nature 2005, 435 (7045), 1102. doi:10.1038/nature03687
      (h) Hochberg, L. R.; Serruya, M. D.; Friehs, G. M.; Mukand, J. A.; Saleh, M.; Caplan, A. H.; Branner, A.; Chen, D.; Penn, R. D.; Donoghue, J. P. Nature 2006, 442 (7099), 164. doi:10.1038/nature04970

    26. [26]

      (a) Lin, M. Z.; Schnitzer, M. J. Nat. Neurosci. 2016, 19 (9), 1142. doi:10.1038/nn.4359
      (b) Poldrack, R. A.; Farah, M. J. Nature 2015, 526 (7573), 371. doi:10.1038/nature15692

    27. [27]

      Hong, G.; Lieber, C. M. Nat. Rev. Neurosci. 2019, 20 (6), 330. doi: 10.1038/s41583-019-0140-6  doi: 10.1038/s41583-019-0140-6

    28. [28]

      Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydin, C.; et al. Nature 2017, 551 (7679), 232. doi: 10.1038/nature24636  doi: 10.1038/nature24636

    29. [29]

      Raducanu, B. C.; Yazicioglu, R. F.; Lopez, C. M.; Ballini, M.; Putzeys, J.; Wang, S.; Andrei, A.; Rochus, V.; Welkenhuysen, M.; van Helleputte, N.; et al. Sensors (Basel) 2017, 17 (10), 2388. doi: 10.3390/s17102388  doi: 10.3390/s17102388

    30. [30]

      Rios, G.; Lubenov, E. V.; Chi, D.; Roukes, M. L.; Siapas, A. G. Nano Lett. 2016, 16 (11), 6857. doi: 10.1021/acs.nanolett.6b02673  doi: 10.1021/acs.nanolett.6b02673

    31. [31]

      Stringer, C.; Pachitariu, M.; Steinmetz, N.; Reddy, C. B.; Carandini, M.; Harris, K. D. Science 2019, 364 (6437), 255. doi: 10.1126/science.aav7893  doi: 10.1126/science.aav7893

    32. [32]

      (a) Xie, C.; Liu, J.; Fu, T. M.; Dai, X.; Zhou, W.; Lieber, C. M. Nat. Mater. 2015, 14 (12), 1286. doi:10.1038/nmat4427
      (b) Saxena, T.; Bellamkonda, R. V. Nat. Mater. 2015, 14 (12), 1190. doi:10.1038/nmat4454

    33. [33]

      Wei, X.; Luan, L.; Zhao, Z.; Li, X.; Zhu, H.; Potnis, O.; Xie, C. Adv. Sci. 2018, 5 (6), 1700625. doi: 10.1002/advs.201700625  doi: 10.1002/advs.201700625

    34. [34]

      Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G.; Zhao, Y.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Nat. Mater. 2019, 18 (5), 510. doi: 10.1038/s41563-019-0292-9  doi: 10.1038/s41563-019-0292-9

    35. [35]

      Schuhmann, T. G.; Yao, J.; Hong, G.; Fu, T. M.; Lieber, C. M. Nano Lett. 2017, 17 (9), 5836. doi: 10.1021/acs.nanolett.7b03081  doi: 10.1021/acs.nanolett.7b03081

    36. [36]

      Guan, S.; Wang, J.; Gu, X.; Zhao, Y.; Hou, R.; Fan, H.; Zou, L.; Gao, L.; Du, M.; Li, C.; Fang, Y. Sci. Adv. 2019, 5 (3), eaav2842. doi: 10.1126/sciadv.aav2842  doi: 10.1126/sciadv.aav2842

    37. [37]

      Du, Z. J.; Kolarcik, C. L.; Kozai, T. D. Y.; Luebben, S. D.; Sapp, S. A.; Zheng, X. S.; Nabity, J. A.; Cui, X. T. Acta Biomater. 2017, 53, 46. doi: 10.1016/j.actbio.2017.02.010  doi: 10.1016/j.actbio.2017.02.010

    38. [38]

      (a) Fu, T. M.; Hong, G.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Nat. Methods 2016, 13 (10), 875. doi:10.1038/nmeth.3969
      (b) Zhou, T.; Hong, G.; Fu, T. M.; Yang, X.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (23), 5894. doi:10.1073/pnas.1705509114

    39. [39]

      Steinmetz, N. A.; Koch, C.; Harris, K. D.; Carandini, M. Curr. Opin. Neurobiol. 2018, 50, 92. doi: 10.1016/j.conb.2018.01.009  doi: 10.1016/j.conb.2018.01.009

    40. [40]

      (a) Salatino, J. W.; Ludwig, K. A.; Kozai, T. D. Y.; Purcell, E. K. Nat. Biomed. Eng. 2017, 1 (11), 862. doi:10.1038/s41551-017-0154-1
      (b) Feiner, R.; Dvir, T. Nat. Rev. Mater. 2017, 3. doi:10.1038/natrevmats.2017.76
      (c) Ritaccio, A.; Brunner, P.; Cervenka, M. C.; Crone, N.; Guger, C.; Leuthardt, E.; Oostenveld, R.; Stacey, W.; Schalk, G. Epilepsy Behav. 2010, 19 (3), 204. doi:10.1016/j.yebeh.2010.08.028

    41. [41]

      Viventi, J.; Kim, D. H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y. S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S. W.; Vanleer, A. C.; et al. Nat. Neurosci. 2011, 14 (12), 1599. doi: 10.1038/nn.2973  doi: 10.1038/nn.2973

    42. [42]

      Khodagholy, D.; Gelinas, J. N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G. G.; Buzsáki, G. Nat. Neurosci. 2015, 18 (2), 310. doi: 10.1038/nn.3905  doi: 10.1038/nn.3905

    43. [43]

      Zhang, J.; Liu, X.; Xu, W.; Luo, W.; Li, M.; Chu, F.; Xu, L.; Cao, A.; Guan, J.; Tang, S.; Duan, X. Nano Lett. 2018, 18 (5), 2903. doi: 10.1021/acs.nanolett.8b00087  doi: 10.1021/acs.nanolett.8b00087

    44. [44]

      Hong, G.; Fu, T. M.; Qiao, M.; Viveros, R. D.; Yang, X.; Zhou, T.; Lee, J. M.; Park, H. G.; Sanes, J. R.; Lieber, C. M. Science 2018, 360 (6396), 1447. doi: 10.1126/science.aas9160  doi: 10.1126/science.aas9160

    45. [45]

      Khodagholy, D.; Gelinas, J. N.; Buzsáki, G. Science 2017, 358 (6361), 369. doi: 10.1126/science.aan6203  doi: 10.1126/science.aan6203

    46. [46]

      Avena-Koenigsberger, A.; Misic, B.; Sporns, O. Nat. Rev. Neurosci. 2018, 19 (1), 17. doi: 10.1038/nrn.2017.149  doi: 10.1038/nrn.2017.149

    47. [47]

      Frankland, P. W.; Bontempi, B. Nat. Rev. Neurosci. 2005, 6 (2), 119. doi: 10.1038/nrn1607  doi: 10.1038/nrn1607

    48. [48]

      Chung, J. E.; Joo, H. R.; Fan, J. L.; Liu, D. F.; Barnett, A. H.; Chen, S.; Geaghan-Breiner, C.; Karlsson, M. P.; Karlsson, M.; Lee, K. Y.; et al. Neuron 2019, 101 (1), 21. doi: 10.1016/j.neuron.2018.11.002  doi: 10.1016/j.neuron.2018.11.002

    49. [49]

      (a) Lee, S.; Sasaki, D.; Kim, D.; Mori, M.; Yokota, T.; Lee, H.; Park, S.; Fukuda, K.; Sekino, M.; Matsuura, K.; et al. Nat. Nanotechnol. 2019, 14 (2), 156. doi:10.1038/s41565-018-0331-8
      (b) Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Nat. Nanotechnol. 2017, 12 (9), 907. doi:10.1038/nnano.2017.125

    50. [50]

      Kozai, T. D. Y.; Catt, K.; Du, Z.; Na, K.; Srivannavit, O.; Haque, R. U. M.; Seymour, J.; Wise, K. D.; Yoon, E.; Cui, X. T. IEEE Trans. Biomed. Eng. 2016, 63 (1), 111. doi: 10.1109/TBME.2015.2445713  doi: 10.1109/TBME.2015.2445713

    51. [51]

      Du, Z. J.; Luo, X.; Weaver, C. L.; Cui, X. T. J. Mater. Chem.C 2015, 3 (25), 6515. doi: 10.1039/C5TC00145E  doi: 10.1039/C5TC00145E

    52. [52]

      Du, Z. J.; Bi, G. Q.; Cui, X. T. Adv. Funct. Mater. 2017, 28 (12), 1703988. doi: 10.1002/adfm.201703988  doi: 10.1002/adfm.201703988

    53. [53]

      Taylor, I.; Du, Z. J.; Bigelow, E.; Eles, J.; Horner, A. R.; Catt, K. A.; Weber, S.; Jamieson, B.; Cui, X. T. J. Mater. Chem. B 2017, 5 (13), 2445. doi: 10.1039/C7TB00095B  doi: 10.1039/C7TB00095B

    54. [54]

      Park, S.; Guo, Y.; Jia, X.; Choe, H. K.; Grena, B.; Kang, J.; Park, J.; Lu, C.; Canales, A.; Chen, R.; et al. Nat. Neurosci. 2017, 20 (4), 612. doi: 10.1038/nn.4510  doi: 10.1038/nn.4510

    55. [55]

      Lee, H. J.; Son, Y.; Kim, J.; Lee, C. J.; Yoon, E. S.; Cho, I. J. Lab Chip 2015, 15 (6), 1590. doi: 10.1039/c4lc01321b  doi: 10.1039/c4lc01321b

    56. [56]

      Jiang, Y.; Tian, B. Nat. Rev. Mater. 2018, 3 (12), 473. doi: 10.1038/s41578-018-0062-3  doi: 10.1038/s41578-018-0062-3

    57. [57]

      Fu, T. M.; Duan, X.; Jiang, Z.; Dai, X.; Xie, P.; Cheng, Z.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A.2014, 111 (4), 1259. doi: 10.1073/pnas.1323389111  doi: 10.1073/pnas.1323389111

    58. [58]

      Mirza, M. M.; Schupp, F. J.; Mol, J. A.; MacLaren, D. A.; Briggs, G. A. D.; Paul, D. J. Sci. Rep. 2017, 7. doi: 10.1038/s41598-017-03138-5  doi: 10.1038/s41598-017-03138-5

    59. [59]

      Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C. M. Science 2010, 329 (5993), 830. doi: 10.1126/science.1192033  doi: 10.1126/science.1192033

    60. [60]

      Zhao, Y.; Yao, J.; Xu, L.; Mankin, M. N.; Zhu, Y.; Wu, H.; Mai, L.; Zhang, Q.; Lieber, C. M. Nano Lett. 2016, 16 (4), 2644. doi: 10.1021/acs.nanolett.6b00292  doi: 10.1021/acs.nanolett.6b00292

    61. [61]

      Duan, X.; Gao, R.; Xie, P.; Cohen-Karni, T.; Qing, Q.; Choe, H. S.; Tian, B.; Jiang, X.; Lieber, C. M. Nat. Nanotechnol. 2012, 7 (3), 174. doi: 10.1038/nnano.2011.223  doi: 10.1038/nnano.2011.223

    62. [62]

      Gao, R.; Strehle, S.; Tian, B.; Cohen-Karni, T.; Xie, P.; Duan, X.; Qing, Q.; Lieber, C. M. Nano Lett. 2012, 12 (6), 3329. doi: 10.1021/nl301623p  doi: 10.1021/nl301623p

    63. [63]

      Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H.; Yu, S.; et al. Nature 2016, 530 (7588), 71. doi: 10.1038/nature16492  doi: 10.1038/nature16492

    64. [64]

      Jiang, Y.; Carvalho-de-Souza, J. L.; Wong, R. C. S.; Luo, Z.; Isheim, D.; Zuo, X.; Nicholls, A. W.; Jung, I. W.; Yue, J.; Liu, D. J.; et al. Nat. Mater. 2016, 15 (9), 1023. doi: 10.1038/nmat4673  doi: 10.1038/nmat4673

    65. [65]

      (a) Park, D. W.; Schendel, A. A.; Mikael, S.; Brodnick, S. K.; Richner, T. J.; Ness, J. P.; Hayat, M. R.; Atry, F.; Frye, S. T.; Pashaie, R.; et al. Nat. Commun. 2014, 5. doi:10.1038/ncomms6258
      (b) Kuzum, D.; Takano, H.; Shim, E.; Reed, J. C.; Juul, H.; Richardson, A. G.; de Vries, J.; Bink, H.; Dichter, M. A.; Lucas, T. H.; et al. Nat. Commun. 2014, 5. doi:10.1038/ncomms6259

    66. [66]

      Tian, B.; Liu, J.; Dvir, T.; Jin, L.; Tsui, J. H.; Qing, Q.; Suo, Z.; Langer, R.; Kohane, D. S.; Lieber, C. M. Nat. Mater. 2012, 11 (11), 986. doi: 10.1038/nmat3404  doi: 10.1038/nmat3404

    67. [67]

      Xu, J.; Wang, S.; Wang, G. J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. F.; et al. Science 2017, 355 (6320), 59. doi: 10.1126/science.aah4496  doi: 10.1126/science.aah4496

    68. [68]

      Fu, T. M.; Hong, G.; Viveros, R. D.; Zhou, T.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (47), E10046. doi: 10.1073/pnas.1717695114  doi: 10.1073/pnas.1717695114

    69. [69]

      Koo, J.; MacEwan, M. R.; Kang, S. K.; Won, S. M.; Stephen, M.; Gamble, P.; Xie, Z.; Yan, Y.; Chen, Y. Y.; Shin, J.; et al. Nat. Med. 2018, 24 (12), 1830. doi: 10.1038/s41591-018-0196-2  doi: 10.1038/s41591-018-0196-2

    70. [70]

      Garcia-Lopez, V.; Chen, F.; Nilewski, L. G.; Duret, G.; Aliyan, A.; Kolomeisky, A. B.; Robinson, J. T.; Wang, G.; Pal, R.; Tour, J. M. Nature 2017, 548 (7669), 567. doi: 10.1038/nature23657  doi: 10.1038/nature23657

    71. [71]

      Xu, T.; Gao, W.; Xu, L. P.; Zhang, X.; Wang, S. Adv. Mater. 2017, 29 (9), 1603250. doi: 10.1002/adma.201603250  doi: 10.1002/adma.201603250

    72. [72]

      Dipalo, M.; Amin, H.; Lovato, L.; Moia, F.; Caprettini, V.; Messina, G. C.; Tantussi, F.; Berdondini, L.; De Angelis, F. Nano Lett.2017, 17 (6), 3932. doi: 10.1021/acs.nanolett.7b01523  doi: 10.1021/acs.nanolett.7b01523

    73. [73]

      Dipalo, M.; Melle, G.; Lovato, L.; Jacassi, A.; Santoro, F.; Caprettini, V.; Schirato, A.; Alabastri, A.; Garoli, D.; Bruno, G.; et al. Nat. Nanotechnol.2018, 13 (10), 965. doi: 10.1038/s41565-018-0222-z  doi: 10.1038/s41565-018-0222-z

    74. [74]

      Parameswaran, R.; Koehler, K.; Rotenberg, M. Y.; Burke, M. J.; Kim, J.; Jeong, K. Y.; Hissa, B.; Paul, M. D.; Moreno, K.; Sarma, N.; et al. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (2), 413. doi: 10.1073/pnas.1816428115  doi: 10.1073/pnas.1816428115

    75. [75]

      Fang, Y.; Jiang, Y.; Ledesrna, H. A.; Yi, J.; Gao, X.; Weiss, D. E.; Shi, F.; Tian, B. Nano Lett. 2018, 18 (7), 4487. doi: 10.1021/acs.nanolett.8b01626  doi: 10.1021/acs.nanolett.8b01626

    76. [76]

      (a) Hai, A.; Shappir, J.; Spira, M. E. Nat. Methods 2010, 7 (3), 200. doi:10.1038/nmeth.1420
      (b) Hai, A.; Spira, M. E. Lab Chip 2012, 12 (16), 2865. doi:10.1039/c2lc40091j

    77. [77]

      Xie, C.; Lin, Z.; Hanson, L.; Cui, Y.; Cui, B. Nat. Nanotechnol.2012, 7 (3), 185. doi: 10.1038/nnano.2012.8  doi: 10.1038/nnano.2012.8

    78. [78]

      Lin, Z. C.; Xie, C.; Osakada, Y.; Cui, Y.; Cui, B. Nat. Commun..2014, 5. doi: 10.1038/ncomms4206  doi: 10.1038/ncomms4206

    79. [79]

      Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat. Nanotechnol. 2012, 7 (3), 180. doi: 10.1038/nnano.2011.249  doi: 10.1038/nnano.2011.249

    80. [80]

      a) Ma, Y.; Bao, J.; Zhang, Y.; Li, Z.; Zhou, X.; Wan, C.; Huang, L.; Zhao, Y.; Han, G.; Xue, T. Cell 2019, 177 (2), 243. doi:10.1016/j.cell.2019.01.038
      (b) Tang, J.; Qin, N.; Chong, Y.; Diao, Y.; Yiliguma; Wang, Z.; Xue, T.; Jiang, M.; Zhang, J.; Zheng, G. Nat. Commun..2018, 9. doi:10.1038/s41467-018-03212-0

    81. [81]

      Zhang, X.; Grajal, J.; Luis Vazquez-Roy, J.; Radhakrishna, U.; Wang, X.; Chern, W.; Zhou, L.; Lin, Y.; Shen, P. C.; Ji, X.; et al. Nature 2019, 566 (7744), 368. doi: 10.1038/s41586-019-0892-1  doi: 10.1038/s41586-019-0892-1

    82. [82]

      Seo, D.; Neely, R. M.; Shen, K.; Singhal, U.; Alon, E.; Rabaey, J. M.; Carmena, J. M.; Maharbiz, M. M. Neuron 2016, 91 (3), 529. doi: 10.1016/j.neuron.2016.06.034  doi: 10.1016/j.neuron.2016.06.034

    83. [83]

      Tunuguntla, R. H.; Bangar, M. A.; Kim, K.; Stroeve, P.; Grigoropoulos, C.; Ajo-Franklin, C. M.; Noy, A. Adv. Mater. 2015, 27 (5), 831. doi: 10.1002/adma.201403988  doi: 10.1002/adma.201403988

    84. [84]

      Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y.; Song, J.; Song, Y. M.; Pao, H. A.; Kim, R. H.; et al. Science 2013, 340 (6129), 211. doi: 10.1126/science.1232437  doi: 10.1126/science.1232437

    85. [85]

      Santoro, F.; Zhao, W.; Joubert, L. M.; Duan, L.; Schnitker, J.; van de Burgt, Y.; Lou, H. Y.; Liu, B.; Salleo, A.; Cui, L.; et al. ACS nano 2017, 11 (8), 8320. doi: 10.1021/acsnano.7b03494  doi: 10.1021/acsnano.7b03494

    86. [86]

      Luan, L.; Wei, X.; Zhao, Z.; Siegel, J. J.; Potnis, O.; Tuppen, C. A.; Lin, S.; Kazmi, S.; Fowler, R. A.; Holloway, S.; et al. Sci. Adv. 2017, 3 (2), e1601966. doi: 10.1126/sciadv.1601966  doi: 10.1126/sciadv.1601966

    87. [87]

      Gonzales, D. L.; Badhiwala, K. N.; Vercosa, D. G.; Avants, B. W.; Liu, Z.; Zhong, W.; Robinson, J. T. Nat. Nanotechnol. 2017, 12 (7), 684. doi: 10.1038/nnano.2017.55  doi: 10.1038/nnano.2017.55

    88. [88]

      (a) Marshall, J. D.; Schnitzer, M. J. ACS Nano 2013, 7 (5), 4601. doi:10.1021/nn401410k
      (b) Peterka, D. S.; Takahashi, H.; Yuste, R. Neuron 2011, 69 (1), 9. doi:10.1016/j.neuron.2010.12.010

    89. [89]

      Efros, A. L.; Delehanty, J. B.; Huston, A. L.; Medintz, I. L.; Barbic, M.; Harris, T. D. Nat. Nanotechnol. 2018, 13 (4), 278. doi: 10.1038/s41565-018-0107-1  doi: 10.1038/s41565-018-0107-1

    90. [90]

      Bonnaud, C.; Monnier, C. A.; Demurtas, D.; Jud, C.; Vanhecke, D.; Montet, X.; Hovius, R.; Lattuada, M.; Rothen-Rutishauser, B.; Petri-Fink, A. ACS nano 2014, 8 (4), 3451. doi: 10.1021/nn406349z  doi: 10.1021/nn406349z

    91. [91]

      (a) Zhao, W.; Hanson, L.; Lou, H. Y.; Akamatsu, M.; Chowdary, P. D.; Santoro, F.; Marks, J. R.; Grassart, A.; Drubin, D. G.; Cui, Y.; et al. Nat. Nanotechnol. 2017, 12 (8), 750. doi:10.1038/nnano.2017.98
      (b) Zimmerman, J. F.; Parameswaran, R.; Murray, G.; Wang, Y.; Burke, M.; Tian, B. Science Advances 2016, 2 (12). doi:10.1126/sciadv.1601039

    92. [92]

      Haziza, S.; Mohan, N.; Loe-Mie, Y.; Lepagnol-Bestel, A. M.; Massou, S.; Adam, M. P.; Le, X. L.; Viard, J.; Plancon, C.; Daudin, R.; Koebel, P.; Dorard, E.; Rose, C.; Hsieh, F. J.; Wu, C. C.; Potier, B.; Herault, Y.; Sala, C.; Corvin, A.; Allinquant, B.; Chang, H. C.; Treussart, F.; Simonneau, M. Nat. Nanotechnol. 2017, 12 (4), 322. doi: 10.1038/nnano.2016.260  doi: 10.1038/nnano.2016.260

    93. [93]

      (a) Gu, Y.; Sun, W.; Wang, G.; Jeftinija, K.; Jeftinija, S.; Fang, N. Nat Commun 2012, 3. doi:10.1038/ncomms2037
      (b) Kaplan, L.; Ierokomos, A.; Chowdary, P.; Bryant, Z.; Cui, B. Sci. Adv. 2018, 4 (3), e1602170. doi:10.1126/sciadv.1602170

    94. [94]

      Berna, J.; Leigh, D. A.; Lubomska, M.; Mendoza, S. M.; Perez, E. M.; Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat. Mater. 2005, 4 (9), 704. doi: 10.1038/nmat1455  doi: 10.1038/nmat1455

    95. [95]

      Jiang, Y.; Li, X.; Liu, B.; Yi, J.; Fang, Y.; Shi, F.; Gao, X.; Sudzilovsky, E.; Parameswaran, R.; Koehler, K.; et al. Nat. Biomed. Eng. 2018, 2 (7), 508. doi: 10.1038/s41551-018-0230-1  doi: 10.1038/s41551-018-0230-1

    96. [96]

      Johannsmeier, S.; Heeger, P.; Terakawa, M.; Kalies, S.; Heisterkamp, A.; Ripken, T.; Heinemann, D. Sci. Rep. 2018, 8. doi: 10.1038/s41598-018-24908-9  doi: 10.1038/s41598-018-24908-9

    97. [97]

      Veetil, A. T.; Chakraborty, K.; Xiao, K.; Minter, M. R.; Sisodia, S. S.; Krishnan, Y. Nat. Nanotechnol. 2017, 12 (12), 1183. doi: 10.1038/nnano.2017.159  doi: 10.1038/nnano.2017.159

    98. [98]

      Narayanaswamy, N.; Chakraborty, K.; Saminathan, A.; Zeichner, E.; Leung, K.; Devany, J.; Krishnan, Y. Nat. Methods 2019, 16 (1), 95. doi: 10.1038/s41592-018-0232-7  doi: 10.1038/s41592-018-0232-7

    99. [99]

      (a) Saha, S.; Prakash, V.; Halder, S.; Chakraborty, K.; Krishnan, Y. Nat. Nanotechnol. 2015, 10 (7), 645. doi:10.1038/nnano.2015.130
      (b) Prakash, V.; Saha, S.; Chakraborty, K.; Krishnan, Y. Chem. Sci. 2016, 7 (3), 1946. doi:10.1039/c5sc04002g
      (c) Leung, K.; Chakraborty, K.; Saminathan, A.; Krishnan, Y. Nat. Nanotechnol. 2019, 14 (2), 176. doi:10.1038/s41565-018-0318-5

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    3. [3]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    20. [20]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

Metrics
  • PDF Downloads(50)
  • Abstract views(1796)
  • HTML views(562)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return