Citation: Cui Xinjiang, Shi Feng. Selective Conversion of CO2 by Single-Site Catalysts[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200608. doi: 10.3866/PKU.WHXB202006080 shu

Selective Conversion of CO2 by Single-Site Catalysts



  • Author Bio: Xinjiang Cui obtained his Ph.D. degree in 2013 supervised by Prof. Youquan Deng and Prof. Feng Shi at Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences. After a five- and half-year postdoctoral research in Leibniz Institute for Catalysis and École Polytechnique Fédérale de Lausanne (EPFL). Xinjiang Cui joined the faculty of LICP and is focusing on the transformation of light chain hydrocarbons and the synthesis of fine chemicals with olefins by heterogeneous catalysis
    Feng Shi completed his Ph.D. studies in catalysis at Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) in 2004. After a three-year postdoctoral research in LIKAT in Germany, he joined the faculty of Lanzhou Institute of Chemical Physics in 2008 as Hundred Talents Program of CAS. Since 2016, Feng SHI is the deputy director of the State Key Laboratory for Oxo Synthesis and Selective Oxidation. His research focuses on nano-catalysis in fine chemical synthesis and C1 chemistry, and he has published more than 120 papers
  • Corresponding author: Cui Xinjiang, xinjiangcui@licp.cas.cn Shi Feng, fshi@licp.cas.cn
  • Received Date: 30 June 2020
    Revised Date: 24 July 2020
    Accepted Date: 25 July 2020
    Available Online: 31 July 2020

    Fund Project: Light of West China and Key Research Program of Frontier Sciences of CAS QYZDJ-SSW-SLH051the National Natural Science Foundation of China 21925207The project was supported by the National Natural Science Foundation of China (21633013, 91745106, 21925207), Light of West China and Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SLH051)the National Natural Science Foundation of China 21633013the National Natural Science Foundation of China 91745106

  • Industrial revolution has led to increased combustion of fossil fuels. Consequently, large amounts of CO2 are emitted to the atmosphere, throwing the carbon cycle out of balance. Currently, the most effective method to reduce the CO2 concentration is direct CO2 capture from the atmosphere and pumping of the captured CO2 deep underground or into the mid-ocean. The transformation of CO2 into high-value chemicals is an attractive yet challenging task. In recent years, there has been much interest in the development of CO2 utilization technologies based on electrochemical CO2 reduction, photochemical CO2 reduction, and thermal CO2 reduction, and CO2 valorization has emerged as a hot research topic. In electrochemical CO2 reduction, the cathodic reaction is the reduction of CO2 to value-added chemicals. The anodic reaction should be the oxygen evolution reaction, and water is the only renewable and scalable source of electrons and protons in this reaction. There is a plethora of research on the use of various metals to catalyze this reaction. Among these, Cu-based materials have been demonstrated to show unique catalytic activity and stability for the electrochemical conversion of CO2 to valuable fuels and chemicals. Moreover, the solar-driven conversion of CO2 into value-added chemical fuels has attracted great attention, and much effort is being devoted to develop novel catalysts for the photoreduction of CO2, especially by mimicking the natural photosynthetic process. The key step in the photocatalytic process is the efficient generation of electron-hole pairs and separation of these charge carriers. The efficient separation of photoinduced charge carriers plays a crucial role in the final catalytic activity. Compared with CO2 reduction via electrocatalysis and photocatalysis, thermal reduction is more attractive because of its potential large-scale application in the industry. Heterogeneous nanomaterials show excellent activity in the electrocatalytic, photocatalytic, and thermal catalytic conversion of CO2. However, nanostructured materials have drawbacks on the investigation of the intrinsic activity of the active sites. In recent years, single-site catalysts have become popular because they allow for maximum utilization of the metal centers, show specific catalytic performance, and facilitate easy elucidation of the catalytic mechanism at the molecular level. Accordingly, numerous single-site catalysts were developed for CO2 reduction to produce value-added chemicals such as CO, CH4, CH3OH, formate, and C2+ products. Value-added chemicals have also been synthesized with the aid of amines and epoxides. This review summarizes recent state-of-the-art single-site catalysts and their application as heterogeneous catalysts for the electroreduction, photoreduction, and thermal reduction of CO2. In the discussion, we will highlight the structure-activity relationships for the catalytic conversion of CO2 with single-site catalysts.
  • 加载中
    1. [1]

      Flytzani-Stephanopoulos, M. Acc. Chem. Res. 2014, 47, 783. doi: 10.1021/ar4001845  doi: 10.1021/ar4001845

    2. [2]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    3. [3]

      Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/c8cs00829a  doi: 10.1039/c8cs00829a

    4. [4]

      Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2019, 48, 3193. doi: 10.1039/c8cs00502h  doi: 10.1039/c8cs00502h

    5. [5]

      Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L.; et al. Nature 2013, 495, 80. doi: 10.1038/nature11893  doi: 10.1038/nature11893

    6. [6]

      Li, T.; Sullivan, J. E.; Rosi, N. L. J. Am. Chem. Soc. 2013, 135, 9984. doi: 10.1021/ja403008j  doi: 10.1021/ja403008j

    7. [7]

      Sarshar, Z.; Sun, Z. K.; Zhao, D. Y.; Kaliaguine, S. Energy Fuels 2012, 26, 3091. doi: 10.1021/ef3003137  doi: 10.1021/ef3003137

    8. [8]

      Cai, R. L.; You, B.; Chen, M.; Wu, L. M. Carbon 2019, 150, 43. doi: 10.1016/j.carbon.2019.05.001  doi: 10.1016/j.carbon.2019.05.001

    9. [9]

      Ma, X. T.; Li, Y. J.; Duan, L. B.; Anthony, E.; Liu, H. T. Appl. Energ. 2018, 225, 402. doi: 10.1016/j.apenergy.2018.05.008  doi: 10.1016/j.apenergy.2018.05.008

    10. [10]

      Chen, W. C.; Shen, J. S.; Jurca, T.; Peng, C. J.; Lin, Y. H.; Wang, Y. P.; Shih, W. C.; Yap, G. P. A.; Ong, T. G. Angew. Chem. Int. Ed. 2015, 54, 15207. doi: 10.1002/anie.201507921  doi: 10.1002/anie.201507921

    11. [11]

      Guo, X. P.; Peng, Z. J.; Traitangwong, A.; Wang, G.; Xu, H. Y.; Meeyoo, V.; Li, C. S.; Zhang, S. J. Green Chem. 2018, 20, 4932. doi: 10.1039/c8gc02337a  doi: 10.1039/c8gc02337a

    12. [12]

      Sakpal, T.; Lefferts, L. J. Catal. 2018, 367, 171. doi: 10.1016/j.jcat.2018.08.027  doi: 10.1016/j.jcat.2018.08.027

    13. [13]

      Wang, X.; Hong, Y. C.; Shi, H.; Szanyi, J. J. Catal. 2016, 343, 185. doi: 10.1016/j.jcat.2016.02.001  doi: 10.1016/j.jcat.2016.02.001

    14. [14]

      Wang, F.; He, S.; Chen, H.; Wang, B.; Zheng, L. R.; Wei, M.; Evans, D. G.; Duan, X. J. Am. Chem. Soc. 2016, 138, 6298. doi: 10.1021/jacs.6b02762  doi: 10.1021/jacs.6b02762

    15. [15]

      Gao, P.; Li, S. G.; Bu, X. N.; Dang, S. S.; Liu, Z. Y.; Wang, H.; Zhong, L. S.; Qiu, M. H.; Yang, C. G.; Cai, J.; et al. Nat. Chem. 2017, 9, 1019. doi: 10.1038/Nchem.2794  doi: 10.1038/Nchem.2794

    16. [16]

      Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; de Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science 2018, 360, 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    17. [17]

      Rao, H.; Chmidt, L. C. S.; Bonin, J.; Robert, M. Nature 2017, 548, 74. doi: 10.1038/nature23016  doi: 10.1038/nature23016

    18. [18]

      Olah, G. A.; Prakash, G. K. S.; Goeppert, A. J. Am. Chem. Soc. 2011, 133, 12881. doi: 10.1021/ja202642y  doi: 10.1021/ja202642y

    19. [19]

      Blondiaux, E.; Pouessel, J.; Cantat, T. Angew. Chem. Int. Ed. 2014, 53, 12186. doi: 10.1002/anie.201407357  doi: 10.1002/anie.201407357

    20. [20]

      Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem. Int. Ed. 2017, 56, 7425. doi: 10.1002/anie.201702734  doi: 10.1002/anie.201702734

    21. [21]

      Nguyen, T. V. Q.; Yoo, W. J.; Kobayashi, S. Angew. Chem. Int. Ed. 2015, 54, 9209. doi: 10.1002/anie.201504072  doi: 10.1002/anie.201504072

    22. [22]

      Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Angew. Chem. Int. Ed. 2016, 55, 7296. doi: 10.1002/anie.201507458  doi: 10.1002/anie.201507458

    23. [23]

      Das, U. K.; Kumar, A.; Ben-David, Y.; Iron, M. A.; Milstein, D. J. Am. Chem. Soc. 2019, 141, 12962. doi: 10.1021/jacs.9b05591  doi: 10.1021/jacs.9b05591

    24. [24]

      Kar, S.; Sen, R.; Goeppert, A.; Prakash, G. K. S. J. Am. Chem. Soc. 2018, 140, 1580. doi: 10.1021/jacs.7b12183  doi: 10.1021/jacs.7b12183

    25. [25]

      Kar, S.; Sen, R.; Kothandaraman, J.; Goeppert, A.; Chowdhury, R.; Munoz, S. B.; Haiges, R.; Prakash, G. K. S. J. Am. Chem. Soc. 2019, 141, 3160. doi: 10.1021/jacs.8b12763  doi: 10.1021/jacs.8b12763

    26. [26]

      Wang, L.; Yan, T. J.; Song, R.; Sun, W.; Dong, Y. C.; Guo, J. L.; Zhang, Z. Z.; Wang, X. X.; Ozin, G. A. Angew. Chem. Int. Ed. 2019, 58, 9501. doi: 10.1002/anie.201904568  doi: 10.1002/anie.201904568

    27. [27]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. Chem. Soc. Rev. 2017, 46, 5689. doi: 10.1039/c7cs00154a  doi: 10.1039/c7cs00154a

    28. [28]

      Mo, Z. B.; Pit, A.; Campos, J.; Kolychev, E. L.; Aldridge, S. J. Am. Chem. Soc. 2016, 138, 3306. doi: 10.1021/jacs.6b01170  doi: 10.1021/jacs.6b01170

    29. [29]

      Rokob, T. A.; Hamza, A.; Papai, I. J. Am. Chem. Soc. 2009, 131, 10701. doi: 10.1021/ja903878z  doi: 10.1021/ja903878z

    30. [30]

      Lee, H. K.; Lee, Y. H.; Morabito, J. V.; Liu, Y. J.; Koh, C. S. L.; Phang, I. Y.; Pedireddy, S.; Han, X. M.; Chou, L. Y.; Tsung, C. K.; et al. J. Am. Chem. Soc. 2017, 139, 11513. doi: 10.1021/jacs.7b04936  doi: 10.1021/jacs.7b04936

    31. [31]

      Li, Z. H.; Rayder, T. M.; Luo, L. S.; Byers, J. A.; Tsung, C. K. J. Am. Chem. Soc. 2018, 140, 8082. doi: 10.1021/jacs.8b04047  doi: 10.1021/jacs.8b04047

    32. [32]

      Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. J. Am. Chem. Soc. 2013, 135, 12634. doi: 10.1021/ja401847c  doi: 10.1021/ja401847c

    33. [33]

      Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/Nchem.1095  doi: 10.1038/Nchem.1095

    34. [34]

      Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Science 2015, 350, 189. doi: 10.1126/science.aac6368  doi: 10.1126/science.aac6368

    35. [35]

      Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Angew. Chem. Int. Ed. 2016, 55, 2058. doi: 10.1002/anie.201509241  doi: 10.1002/anie.201509241

    36. [36]

      Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M.; et al. Nat. Commun. 2016, 7, 13638. doi: 10.1038/Ncomms13638  doi: 10.1038/Ncomms13638

    37. [37]

      Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Science 2019, 364, 1091. doi: 10.1126/science.aaw7515  doi: 10.1126/science.aaw7515

    38. [38]

      Lucci, F. R.; Liu, J. L.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Nat. Commun. 2015, 6, 8550. doi: 10.1038/Ncomms9550  doi: 10.1038/Ncomms9550

    39. [39]

      Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal. 2018, 1, 385. doi: 10.1038/s41929-018-0090-9  doi: 10.1038/s41929-018-0090-9

    40. [40]

      Cui, X. J.; Junge, K.; Dai, X. C.; Kreyenschulte, C.; Pohl, M. M.; Wohlrab, S.; Shi, F.; Bruckner, A.; Beller, M. ACS Cent. Sci. 2017, 3, 580. doi: 10.1021/acscentsci.7b00105  doi: 10.1021/acscentsci.7b00105

    41. [41]

      Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. H.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J.; et al. J. Am. Chem. Soc. 2017, 139, 4290. doi: 10.1021/jacs.7b00261  doi: 10.1021/jacs.7b00261

    42. [42]

      Luc, W.; Collins, C.; Wang, S. W.; Xin, H. L.; He, K.; Kang, Y. J.; Jiao, F. J. Am. Chem. Soc. 2017, 139, 1885. doi: 10.1021/jacs.6b10435  doi: 10.1021/jacs.6b10435

    43. [43]

      Cored, J.; Garcia-Ortiz, A.; Iborra, S.; Climent, M. J.; Liu, L. C.; Chuang, C. H.; Chan, T. S.; Escudero, C.; Concepcion, P.; Corma, A. J. Am. Chem. Soc. 2019, 141, 19304. doi: 10.1021/jacs.9b07088  doi: 10.1021/jacs.9b07088

    44. [44]

      Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Angew. Chem. Int. Ed. 2013, 52, 5776. doi: 10.1002/anie.201301473  doi: 10.1002/anie.201301473

    45. [45]

      O'Mara, P. B.; Wilde, P.; Benedetti, T. M.; Andronescu, C.; Cheong, S.; Gooding, J. J.; Tilley, R. D.; Schuhmann, W. J. Am. Chem. Soc. 2019, 141, 14093. doi: 10.1021/jacs.9b07310  doi: 10.1021/jacs.9b07310

    46. [46]

      Sanchez-Contador, M. S.; Ateka, A.; Aguayo, A. T.; Bilbao, J. Fuel Process. Technol. 2018, 179, 258. doi: 10.1016/j.fuproc.2018.07.009  doi: 10.1016/j.fuproc.2018.07.009

    47. [47]

      Wang, X. X.; Yang, G. H.; Zhang, J. F.; Chen, S. Y.; Wu, Y. Q.; Zhang, Q. D.; Wang, J. W.; Han, Y. Z.; Tan, Y. S. Chem. Commun. 2016, 52, 7352. doi: 10.1039/c6cc01965j  doi: 10.1039/c6cc01965j

    48. [48]

      Humphrey, J. J. L.; Plana, D.; Celorrio, V.; Sadasivan, S.; Tooze, R. P.; Rodriguez, P.; Fermin, D. J. ChemCatChem 2016, 8, 952. doi: 10.1002/cctc.201501260  doi: 10.1002/cctc.201501260

    49. [49]

      Ren, D.; Gao, J.; Pan, L. F.; Wang, Z. W.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Gratzel, M. Angew. Chem. Int. Ed. 2019, 58, 15036. doi: 10.1002/anie.201909610  doi: 10.1002/anie.201909610

    50. [50]

      Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. J. Am. Chem. Soc. 2017, 139, 8078. doi: 10.1021/jacs.7b02736  doi: 10.1021/jacs.7b02736

    51. [51]

      Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R.; et al. Adv. Mater. 2018, 30, 1706287. doi: 10.1002/adma.201706287  doi: 10.1002/adma.201706287

    52. [52]

      Jeong, H. Y.; Balamurugan, M.; Choutipalli, V. S. K.; Jo, J.; Baik, H.; Subramanian, V.; Kim, M.; Sim, U.; Nam, K. T. Chem. Eur. J. 2018, 24, 18444. doi: 10.1002/chem.201803615  doi: 10.1002/chem.201803615

    53. [53]

      Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 893. doi: 10.1039/c7ee03245e  doi: 10.1039/c7ee03245e

    54. [54]

      Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R.; et al. Nat. Energ. 2018, 3, 140. doi: 10.1038/s41560-017-0078-8  doi: 10.1038/s41560-017-0078-8

    55. [55]

      Mou, K. W.; Chen, Z. P.; Zhang, X. X.; Jiao, M. Y.; Zhang, X. P.; Ge, X.; Zhang, W.; Liu, L. C. Small 2019, 15, 1903668. doi: 10.1002/smll.201903668  doi: 10.1002/smll.201903668

    56. [56]

      Yuan, C. Z.; Liang, K.; Xia, X. M.; Yang, Z. K.; Jiang, Y. F.; Zhao, T.; Lin, C.; Cheang, T. Y.; Zhong, S. L.; Xu, A. W. Catal. Sci. Technol. 2019, 9, 3669. doi: 10.1039/c9cy00363k  doi: 10.1039/c9cy00363k

    57. [57]

      Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2020, 59, 2705. doi: 10.1002/anie.201914977  doi: 10.1002/anie.201914977

    58. [58]

      Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Angew. Chem. Int. Ed. 2020, 59, 1961. doi: 10.1002/anie.201912458  doi: 10.1002/anie.201912458

    59. [59]

      Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W. Z.; Liu, L. H.; Gao, J. J.; Li, X. N.; Ren, X. Y.; Kuang, Z. C.; et al. Angew. Chem. Int. Ed. 2019, 59, 789. doi: 10.1002/anie.201911995  doi: 10.1002/anie.201911995

    60. [60]

      Zhao, C. M.; Wang, Y.; Li, Z. J.; Chen, W. X.; Xu, Q.; He, D. S.; Xi, D. S.; Zhang, Q. H.; Yuan, T. W.; Qu, Y. T.; et al. Joule 2019, 3, 584. doi: 10.1016/j.joule.2018.11.008  doi: 10.1016/j.joule.2018.11.008

    61. [61]

      Zheng, T. T.; Jiang, K.; Ta, N.; Hu, Y. F.; Zeng, J.; Liu, J. Y.; Wang, H. T. Joule 2019, 3, 265. doi: 10.1016/j.joule.2018.10.015  doi: 10.1016/j.joule.2018.10.015

    62. [62]

      Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140, 4218. doi: 10.1021/jacs.8b00814  doi: 10.1021/jacs.8b00814

    63. [63]

      Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X.; et al. Angew. Chem. Int. Ed. 2018, 57, 1944. doi: 10.1002/anie.201712451  doi: 10.1002/anie.201712451

    64. [64]

      Han, J. Y.; An, P. F.; Liu, S. H.; Zhang, X. F.; Wang, D. W.; Yuan, Y.; Guo, J.; Qiu, X. Y.; Hou, K.; Shi, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 12711. doi: 10.1002/anie.201907399  doi: 10.1002/anie.201907399

    65. [65]

      He, Q.; Liu, D. B.; Lee, J. H.; Liu, Y. M.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. G. Angew. Chem. Int. Ed. 2020, 59, 3033. doi: 10.1002/anie.201912719  doi: 10.1002/anie.201912719

    66. [66]

      Qin, X. P.; Zhu, S. Q.; Xiao, F.; Zhang, L. L.; Shao, M. H. ACS Energy Lett. 2019, 4, 1778. doi: 10.1021/acsenergylett.9b01015  doi: 10.1021/acsenergylett.9b01015

    67. [67]

      Sun, X. H.; Wang, R. M.; Ould-Chikh, S.; Osadchii, D.; Li, G. N.; Aguilar, A.; Hazemann, J. L.; Kapteijn, F.; Gascon, J. J. Catal. 2019, 378, 320. doi: 10.1016/j.jcat.2019.09.013  doi: 10.1016/j.jcat.2019.09.013

    68. [68]

      Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J.; Wang, J. Z. Angew. Chem. Int. Ed. 2019, 58, 14871. doi: 10.1002/anie.201906079  doi: 10.1002/anie.201906079

    69. [69]

      Chen, X.; Ma, D. D.; Chen, B.; Zhang, K. X.; Zou, R. Q.; Wu, X. T.; Zhu, Q. L. Appl. Catal. B-Environ. 2020, 267, 118720. doi: 10.1016/j.apcatb.2020.118720  doi: 10.1016/j.apcatb.2020.118720

    70. [70]

      Zhang, Z.; Ma, C.; Tu, Y. C.; Si, R.; Wei, J.; Zhang, S. H.; Wang, Z.; Li, J. F.; Wang, Y.; Deng, D. H. Nano Res. 2019, 12, 2313. doi: 10.1007/s12274-019-2316-9  doi: 10.1007/s12274-019-2316-9

    71. [71]

      Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. ACS Catal. 2018, 8, 3116. doi: 10.1021/acscatal.8b00398  doi: 10.1021/acscatal.8b00398

    72. [72]

      Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Angew. Chem. Int. Ed. 2018, 57, 12303. doi: 10.1002/anie.201805871  doi: 10.1002/anie.201805871

    73. [73]

      Jia, M. W.; Hong, S.; Wu, T. S.; Li, X.; Soo, Y. L.; Sun, Z. Y. Chem. Commun. 2019, 55, 12024. doi: 10.1039/c9cc06178a  doi: 10.1039/c9cc06178a

    74. [74]

      Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zhene, X. S.; et al. J. Am. Chem. Soc. 2019, 141, 16569. doi: 10.1021/jacs.9b08259  doi: 10.1021/jacs.9b08259

    75. [75]

      He, Q.; Lee, J. H.; Liu, D. B.; Liu, Y. M.; Lin, Z. X.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Adv. Funct. Mater. 2020, 2000407. doi: 10.1002/adfm.202000407  doi: 10.1002/adfm.202000407

    76. [76]

      Huang, P. C.; Cheng, M.; Zhang, H. H.; Zuo, M.; Xiao, C.; Xie, Y. Nano Energy 2019, 61, 428. doi: 10.1016/j.nanoen.2019.05.003  doi: 10.1016/j.nanoen.2019.05.003

    77. [77]

      Karapinar, D.; Huan, N. T.; Sahraie, N. R.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Tizei, L. H. G.; Zitolo, A.; et al. Angew. Chem. Int. Ed. 2019, 58, 15098. doi: 10.1002/anie.201907994  doi: 10.1002/anie.201907994

    78. [78]

      Lee, D. K.; Choi, J. I.; Lee, G. H.; Kim, Y. H.; Kang, J. K. Adv. Energy Mater. 2016, 6, 1600583. doi: 10.1002/aenm.201600583  doi: 10.1002/aenm.201600583

    79. [79]

      Guo, Q. S.; Zhang, Q. H.; Wang, H. Z.; Liu, Z. F.; Zhao, Z. Catal. Commun. 2016, 77, 118. doi: 10.1016/j.catcom.2016.01.019  doi: 10.1016/j.catcom.2016.01.019

    80. [80]

      Dong, Y. C.; Ghuman, K. K.; Popescu, R.; Duchesne, P. N.; Zhou, W. J.; Loh, J. Y. Y.; Jelle, A. A.; Jia, J.; Wang, D.; Mu, X. K.; et al. Adv. Sci. 2018, 5, 700732. doi: 10.1002/Advs.201700732  doi: 10.1002/Advs.201700732

    81. [81]

      Das, S.; Pexrez-Ramıxrez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Chem. Soc. Rev. 2020, 49, 2937. doi: 10.1039/C9CS00713J  doi: 10.1039/C9CS00713J

    82. [82]

      Pougin, A.; Dodekatos, G.; Dilla, M.; Tuysuz, H.; Strunk, J. Chem. Eur. J. 2018, 24, 12416. doi: 10.1002/chem.201801796  doi: 10.1002/chem.201801796

    83. [83]

      Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. J. Am. Chem. Soc. 2016, 138, 6292. doi: 10.1021/jacs.6b02692  doi: 10.1021/jacs.6b02692

    84. [84]

      Yan, Z. H.; Du, M. H.; Liu, J. X.; Jin, S. Y.; Wang, C.; Zhuang, G. L.; Kong, X. J.; Long, L. S.; Zheng, L. S. Nat. Commun. 2018, 9, 3353. doi: 10.1038/s41467-018-05659-7  doi: 10.1038/s41467-018-05659-7

    85. [85]

      Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G.; et al. Angew. Chem. Int. Ed. 2016, 55, 14308. doi: 10.1002/anie.201608597  doi: 10.1002/anie.201608597

    86. [86]

      Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Adv. Mater. 2018, 30, 1704624. doi: 10.1002/adma.201704624  doi: 10.1002/adma.201704624

    87. [87]

      Huang, P. P.; Huang, J. H.; Pantovich, S. A.; Carl, A. D.; Fenton, T. G.; Caputo, C. A.; Grimm, R. L.; Frenkel, A. I.; Li, G. H. J. Am. Chem. Soc. 2018, 140, 16042. doi: 10.1021/jacs.8b10380  doi: 10.1021/jacs.8b10380

    88. [88]

      Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z.; et al. Nat. Commun. 2019, 10, 2840. doi: 10.1038/s41467-019-10392-w  doi: 10.1038/s41467-019-10392-w

    89. [89]

      Liu, M.; Mu, Y. F.; Yao, S.; Guo, S.; Guo, X. W.; Zhang, Z. M.; Lu, T. B. Appl. Catal. B-Environ. 2019, 245, 496. doi: 10.1016/j.apcatb.2019.01.014  doi: 10.1016/j.apcatb.2019.01.014

    90. [90]

      Jiang, Z. Y.; Sun, W.; Miao, W. K.; Yuan, Z. M.; Yang, G. H.; Kong, F. G.; Yan, T. J.; Chen, J. C.; Huang, B. B.; An, C. H.; Ozin, G. A. Adv. Sci. 2019, 6, 1900289. doi: 10.1002/advs.201900289  doi: 10.1002/advs.201900289

    91. [91]

      Yuan, L.; Hung, S. F.; Tang, Z. R.; Chen, H. M.; Xiong, Y. J.; Xu, Y. J. ACS Catal. 2019, 9, 4824. doi: 10.1021/acscatal.9b00862  doi: 10.1021/acscatal.9b00862

    92. [92]

      Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. J. Am. Chem. Soc. 2019, 141, 7615. doi: 10.1021/jacs.9b02997  doi: 10.1021/jacs.9b02997

    93. [93]

      Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D.; et al. Angew. Chem. Int. Ed. 2020, 59, 10651. doi: 10.1002/anie.202003623  doi: 10.1002/anie.202003623

    94. [94]

      Yang, D. R.; Yu, H. D.; He, T.; Zuo, S. W.; Liu, X. Z.; Yang, H. Z.; Ni, B.; Li, H. Y.; Gu, L.; Wang, D.; Wang, X. Nat. Commun. 2019, 10, 3844. doi: 10.1038/s41467-019-11817-2  doi: 10.1038/s41467-019-11817-2

    95. [95]

      Fang, C.; Lu, C. L.; Liu, M. H.; Zhu, Y. L.; Fu, Y.; Lin, B. L. ACS Catal. 2016, 6, 7876. doi: 10.1021/acscatal.6b01856  doi: 10.1021/acscatal.6b01856

    96. [96]

      Lee, W. T.; van Muyden, A. P.; Bobbink, F. D.; Huang, Z. J.; Dyson, P. J. Angew. Chem. Int. Ed. 2019, 58, 557. doi: 10.1002/anie.201811086  doi: 10.1002/anie.201811086

    97. [97]

      Shyshkanov, S.; Nguyen, T. N.; Ebrahim, F. M.; Stylianou, K. C.; Dyson, P. J. Angew. Chem. Int. Ed. 2019, 58, 5371. doi: 10.1002/anie.201901171  doi: 10.1002/anie.201901171

    98. [98]

      Zhu, J.; Usov, P. M.; Xu, W. Q.; Celis-Salazar, P. J.; Lin, S. Y.; Kessinger, M. C.; Landaverde-Alvarado, C.; Cai, M.; May, A. M.; Slebodnick, C.; et al. J. Am. Chem. Soc. 2018, 140, 993. doi: 10.1021/jacs.7b10643  doi: 10.1021/jacs.7b10643

    99. [99]

      Rochelle, G. T. Science 2009, 325, 1652. doi: 10.1126/science.1176731  doi: 10.1126/science.1176731

    100. [100]

      Wang, Y.; Arandiyan, H.; Scott, J.; Aguey-Zinsou, K. F.; Amal, R. ACS Appl. Energy Mater. 2018, 1, 6781. doi: 10.1021/acsaem.8b00817  doi: 10.1021/acsaem.8b00817

    101. [101]

      Kwak, J. H.; Kovarik, L.; Szanyi, J. ACS Catal. 2013, 3, 2094. doi: 10.1021/cs4001392  doi: 10.1021/cs4001392

    102. [102]

      Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. ACS Catal. 2018, 8, 6203. doi: 10.1021/acscatal.7b04469  doi: 10.1021/acscatal.7b04469

    103. [103]

      Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Chem 2019, 5, 693. doi: 10.1016/j.chempr.2018.12.014  doi: 10.1016/j.chempr.2018.12.014

    104. [104]

      Millet, M. M.; Algara-Siller, G.; Wrabetz, S.; Mazheika, A.; Girgsdies, F.; Teschner, D.; Seitz, F.; Tarasov, A.; Leychenko, S. V.; Schlogl, R.; et al. J. Am. Chem. Soc. 2019, 141, 2451. doi: 10.1021/jacs.8b11729  doi: 10.1021/jacs.8b11729

    105. [105]

      Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Nat. Commun. 2019, 10, 2359. doi: 10.1038/s41467-019-10304-y  doi: 10.1038/s41467-019-10304-y

    106. [106]

      Caparros, F. J.; Soler, L.; Rossell, M. D.; Angurell, I.; Piccolo, L.; Rossell, O.; Llorca, J. ChemCatChem 2018, 10, 2365. doi: 10.1002/cctc.201800362  doi: 10.1002/cctc.201800362

    107. [107]

      Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B.; et al. J. Am. Chem. Soc. 2019, 141, 4086. doi: 10.1021/jacs.8b13579  doi: 10.1021/jacs.8b13579

    108. [108]

      Cui, X. J.; Dai, X. C.; Surkus, A. E.; Junge, K.; Kreyenschulte, C.; Agostini, G.; Rockstroh, N.; Beller, M. Chin. J. Catal. 2019, 40, 1679. doi: S1872-2067(19)63316-4

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    4. [4]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    5. [5]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    8. [8]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    9. [9]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    12. [12]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    13. [13]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    14. [14]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    15. [15]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    18. [18]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    19. [19]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    20. [20]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

Metrics
  • PDF Downloads(10)
  • Abstract views(472)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return