Citation: Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 200604. doi: 10.3866/PKU.WHXB202006046 shu

Chemical Vapor Deposition Method for Graphene Fiber Materials

  • Corresponding author: Yue Qi, qiyue-cnc@pku.edu.cn Zhongfan Liu, zfliu@pku.edu.cn
  • Received Date: 18 June 2020
    Revised Date: 29 July 2020
    Accepted Date: 30 July 2020
    Available Online: 3 August 2020

    Fund Project: the National Key Basic Research Program of China (973) 2016YFA0200103the National Natural Science Foundation of China 51520105003the National Natural Science Foundation of China 51432002the National Natural Science Foundation of China U1904193the Beijing National Laboratory for Molecular Sciences, China BNLMS-CXTD-202001the Beijing Municipal Science & Technology Commission, China Z181100004818001

  • Graphene fiber material is one type of macroscopically one-dimensional materials assembled by graphene building blocks or coating graphene on other fibrous building blocks. The typical graphene fiber materials can be classified into graphene fiber and graphene-coated hybrid fiber based on their different building blocks. This type of materials exhibits superior tensile strength, excellent electrical and thermal conductivities, making them favorable for applications in flexible energy storage devices, electromagnetic shielding and wearable electronics. Recently, the chemical vapor deposition (CVD) method, conventionally used for fabricating film-like graphene, has been widely applied to the synthesis of graphene fiber materials. For preparing graphene fiber, the use of CVD method can prevent the complicated and time-consuming reducing treatment of graphene oxide (GO), which is well known as an imperative step in the commonly used wet spinning method. For preparing graphene-coated hybrid fiber, the CVD method can achieve an efficient modulation of graphene quality, and ensure a strong adhesion between graphene and fibrous substrates. In this review, we summarized the CVD methods for fabricating graphene fiber materials, including graphene-assembled graphene fiber and graphene-coated hybrid fiber, and introduced their excellent mechanical, electrical, thermal and optical properties along with their broad applications in intelligent sensors, optoelectronic devices, and flexible electrodes. Furthermore, the challenges in synthesizing CVD-fabricated graphene fiber materials were also analyzed. This review can be briefly divided into three parts: (1) Synthesis of graphene fibers: Up to now, the CVD method is a feasible and effective way to synthesize graphene with high crystallinity. The CVD strategies for fabricating graphene fibers mainly consist of the template method, the secondary growth method, and the film-scrolling method, which can simplify the fabrication process and efficiently modulate graphene quality. (2) Synthesis of graphene glass fibers: Similar to graphene growth directly on non-catalytic glass surfaces, CVD method can also be applied to synthesize graphene on glass fibers. By modifying the experimental parameters (carbon source, pressure, temperature, etc.), high-quality graphene films with controllable thickness can be uniformly coated on glass fibers. Meanwhile, the as-fabricated graphene glass fiber can be further used as a high-performance flexible electrode, electro-optic modulator, or electrocatalyst. (3) Synthesis of graphene metal fibers: Graphene can be controllably grown on metal fibers using the CVD method. Compared to the bare metal fiber, the fabricated graphene metal fiber exhibited enhanced electrical and thermal conductivities as well as better chemical stability, which can expand its applications in ultra-thin electronics and high-power circuits.
  • 加载中
    1. [1]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    2. [2]

      Balandin, A. A. Nat. Mater. 2011, 10, 569. doi: 10.1038/nmat3064  doi: 10.1038/nmat3064

    3. [3]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    4. [4]

      Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906. doi: 10.1002/adma.201001068  doi: 10.1002/adma.201001068

    5. [5]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    6. [6]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    7. [7]

      Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; et al. Nat. Commun. 2014, 5, 5357. doi: 10.1038/ncomms6357  doi: 10.1038/ncomms6357

    8. [8]

      Meng, F.; Lu, W.; Li, Q.; Byun, J. H.; Oh, Y.; Chou, T. W. Adv. Mater. 2015, 27, 5113. doi: 10.1002/adma.201501126  doi: 10.1002/adma.201501126

    9. [9]

      Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Science 2012, 335, 442. doi: 10.1126/science.1211694  doi: 10.1126/science.1211694

    10. [10]

      Zhu, C.; Han, T. Y.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Nat. Commun. 2015, 6, 6962. doi: 10.1038/ncomms7962  doi: 10.1038/ncomms7962

    11. [11]

      Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Adv. Mater. 2019, 31, 1808283. doi: 10.1002/adma.201808283  doi: 10.1002/adma.201808283

    12. [12]

      Yan, C.; Cho, J. H.; Ahn, J. H. Nanoscale 2012, 4, 4870. doi: 10.1039/c2nr30994g  doi: 10.1039/c2nr30994g

    13. [13]

      Yi, F.; Ren, H.; Shan, J.; Sun, X.; Wei, D.; Liu, Z. Chem. Soc. Rev. 2018, 47, 3152. doi: 10.1039/c7cs00849j  doi: 10.1039/c7cs00849j

    14. [14]

      Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S.; et al. Nature 2017, 544, 340. doi: 10.1038/nature22053  doi: 10.1038/nature22053

    15. [15]

      Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Perez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galan, T.; et al. Nat. Photon. 2017, 11, 366. doi: 10.1038/nphoton.2017.75  doi: 10.1038/nphoton.2017.75

    16. [16]

      Sun, H.; Xu, Z.; Gao, C. Adv. Mater. 2013, 25, 2554. doi: 10.1002/adma.201204576  doi: 10.1002/adma.201204576

    17. [17]

      Fang, B.; Chang, D.; Xu, Z.; Gao, C. Adv. Mater. 2020, 32, e1902664. doi: 10.1002/adma.201902664  doi: 10.1002/adma.201902664

    18. [18]

      Chen, L.; Liu, Y.; Zhao, Y.; Chen, N.; Qu, L. Nanotechnology 2016, 27, 032001. doi: 10.1088/0957-4484/27/3/032001  doi: 10.1088/0957-4484/27/3/032001

    19. [19]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    20. [20]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448  doi: 10.1002/adma.201203448

    21. [21]

      Tian, Q.; Xu, Z.; Liu, Y.; Fang, B.; Peng, L.; Xi, J.; Li, Z.; Gao, C. Nanoscale 2017, 9, 12335. doi: 10.1039/c7nr03895j  doi: 10.1039/c7nr03895j

    22. [22]

      Hu, C.; Zhao, Y.; Cheng, H.; Wang, Y.; Dong, Z.; Jiang, C.; Zhai, X.; Jiang, L.; Qu, L. Nano Lett. 2012, 12, 5879. doi: 10.1021/nl303243h  doi: 10.1021/nl303243h

    23. [23]

      Cheng, H.; Hu, Y.; Zhao, F.; Dong, Z.; Wang, Y.; Chen, N.; Zhang, Z.; Qu, L. Adv. Mater. 2014, 26, 2909. doi: 10.1002/adma.201305708  doi: 10.1002/adma.201305708

    24. [24]

      Jang, E. Y.; Carretero-Gonzalez, J.; Choi, A.; Kim, W. J.; Kozlov, M. E.; Kim, T.; Kang, T. J.; Baek, S. J.; Kim, D. W.; Park, Y. W.; et al. Nanotechnology 2012, 23, 235601. doi: 10.1088/0957-4484/23/23/235601  doi: 10.1088/0957-4484/23/23/235601

    25. [25]

      Chen, J.; Zhao, D.; Jin, X.; Wang, C.; Wang, D.; Ge, H. Compos. Sci. Technol. 2014, 97, 41. doi: 10.1016/j.compscitech.2014.03.023  doi: 10.1016/j.compscitech.2014.03.023

    26. [26]

      Ning, N.; Zhang, W.; Yan, J.; Xu, F.; Wang, T.; Su, H.; Tang, C.; Fu, Q. Polymer 2013, 54, 303. doi: 10.1016/j.polymer.2012.11.045  doi: 10.1016/j.polymer.2012.11.045

    27. [27]

      Mahmood, H.; Tripathi, M.; Pugno, N.; Pegoretti, A. Compos. Sci. Technol. 2016, 126, 149. doi: 10.1016/j.compscitech.2016.02.016  doi: 10.1016/j.compscitech.2016.02.016

    28. [28]

      Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Adv. Funct. Mater. 2009, 19, 3077. doi: 10.1002/adfm.200901007  doi: 10.1002/adfm.200901007

    29. [29]

      Li, W.; Yi, L.; Zheng, R.; Ni, Z.; Hu, W. Photon. Res. 2016, 4, 41. doi: 10.1364/prj.4.000041  doi: 10.1364/prj.4.000041

    30. [30]

      Zhang, J.; Lin, L.; Jia, K.; Sun, L.; Peng, H.; Liu, Z. Adv. Mater. 2020, 32, e1903266. doi: 10.1002/adma.201903266  doi: 10.1002/adma.201903266

    31. [31]

      Lin, L.; Deng, B.; Sun, J.; Peng, H.; Liu, Z. Chem. Rev. 2018, 118, 9281. doi: 10.1021/acs.chemrev.8b00325  doi: 10.1021/acs.chemrev.8b00325

    32. [32]

      Lin, L.; Li, J.; Yuan, Q.; Li, Q.; Zhang, J.; Sun, L.; Rui, D.; Chen, Z.; Jia, K.; Wang, M.; et al. Sci. Adv. 2019, 5, eaaw8337. doi: 10.1126/sciadv.aaw8337  doi: 10.1126/sciadv.aaw8337

    33. [33]

      Wei, D.; Liu, Y.; Zhang, H.; Huang, L.; Wu, B.; Chen, J.; Yu, G. J. Am. Chem. Soc. 2009, 131, 11147. doi: 10.1021/ja903092k  doi: 10.1021/ja903092k

    34. [34]

      Cui, C.; Qian, W.; Yu, Y.; Kong, C.; Yu, B.; Xiang, L.; Wei, F. J. Am. Chem. Soc. 2014, 136, 2256. doi: 10.1021/ja412219r  doi: 10.1021/ja412219r

    35. [35]

      Chen, T.; Dai, L. Angew. Chem. Int. Ed. 2015, 54, 14947. doi: 10.1002/anie.201507246  doi: 10.1002/anie.201507246

    36. [36]

      Wang, X.; Qiu, Y.; Cao, W.; Hu, P. Chem. Mater. 2015, 27, 6969. doi: 10.1021/acs.chemmater.5b02098  doi: 10.1021/acs.chemmater.5b02098

    37. [37]

      Wang, Y.; Wang, L.; Yang, T.; Li, X.; Zang, X.; Zhu, M.; Wang, K.; Wu, D.; Zhu, H. Adv. Funct. Mater. 2014, 24, 4666. doi: 10.1002/adfm.201400379  doi: 10.1002/adfm.201400379

    38. [38]

      He, T.; Lin, C.; Shi, L.; Wang, R.; Sun, J. ACS Appl. Mater. Interfaces 2018, 10, 9653. doi: 10.1021/acsami.7b17975  doi: 10.1021/acsami.7b17975

    39. [39]

      Li, X.; Sun, P.; Fan, L.; Zhu, M.; Wang, K.; Zhong, M.; Wei, J.; Wu, D.; Cheng, Y.; Zhu, H. Sci. Rep. 2012, 2, 395. doi: 10.1038/srep00395  doi: 10.1038/srep00395

    40. [40]

      Tabassian, R.; Nguyen, V. H.; Umrao, S.; Mahato, M.; Kim, J.; Porfiri, M.; Oh, I. K. Adv. Sci. 2019, 6, 1901711. doi: 10.1002/advs.201901711  doi: 10.1002/advs.201901711

    41. [41]

      Zeng, J.; Ji, X.; Ma, Y.; Zhang, Z.; Wang, S.; Ren, Z.; Zhi, C.; Yu, J. Adv. Mater. 2018, 30, e1705380. doi: 10.1002/adma.201705380  doi: 10.1002/adma.201705380

    42. [42]

      Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S. ACS Nano 2012, 6, 4020. doi: 10.1021/nn3003345  doi: 10.1021/nn3003345

    43. [43]

      Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Nat. Mater. 2011, 10, 424. doi: 10.1038/nmat3001  doi: 10.1038/nmat3001

    44. [44]

      Li, X.; Zhao, T.; Wang, K.; Yang, Y.; Wei, J.; Kang, F.; Wu, D.; Zhu, H. Langmuir 2011, 27, 12164. doi: 10.1021/la202380g  doi: 10.1021/la202380g

    45. [45]

      Choi, Y. S.; Yeo, C. S.; Kim, S. J.; Lee, J. Y.; Kim, Y.; Cho, K. R.; Ju, S.; Hong, B. H.; Park, S. Y. Nanoscale 2019, 11, 12637. doi: 10.1039/c8nr07527a  doi: 10.1039/c8nr07527a

    46. [46]

      Prewo, K. M.; Brennan, J. J. J. Mater. Sci. 1980, 15, 463. doi: 10.1007/bf00551699  doi: 10.1007/bf00551699

    47. [47]

      Thomas, W. F. Nature 1973, 242, 455. doi: 10.1038/242455a0  doi: 10.1038/242455a0

    48. [48]

      Rioux, M.; Ledemi, Y.; Viens, J.; Morency, S.; Ghaffari, S. A.; Messaddeq, Y. RSC Adv. 2015, 5, 40236. doi: 10.1039/c5ra00681c  doi: 10.1039/c5ra00681c

    49. [49]

      Guo, C.; Duan, H.; Dong, C.; Zhao, G.; Liu, Y.; Yang, Y. Mater. Lett. 2015, 143, 124. doi: 10.1016/j.matlet.2014.12.091  doi: 10.1016/j.matlet.2014.12.091

    50. [50]

      Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14.  doi: 10.3866/PKU.WHXB201511133

    51. [51]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    52. [52]

      Chen, Y.; Sun, J.; Gao, J.; Du, F.; Han, Q.; Nie, Y.; Chen, Z.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D.; et al. Adv. Mater. 2015, 27, 7839. doi: 10.1002/adma.201504229  doi: 10.1002/adma.201504229

    53. [53]

      Cui, G.; Cheng, Y.; Liu, C.; Huang, K.; Li, J.; Wang, P.; Duan, X.; Chen, K.; Liu, K.; Liu, Z. ACS Nano 2020, 14, 5938. doi: 10.1021/acsnano.0c01298  doi: 10.1021/acsnano.0c01298

    54. [54]

      Chen, Z.; Qi, Y.; Chen, X.; Zhang, Y.; Liu, Z. Adv. Mater. 2019, 31, 1803639. doi: 10.1002/adma.201803639  doi: 10.1002/adma.201803639

    55. [55]

      Benabid, F.; Knight, J. C.; Antonopoulos, G.; Russell, P. S. J. Science 2002, 298, 399. doi: 10.1126/science.1076408  doi: 10.1126/science.1076408

    56. [56]

      He, R.; Sazio, P. J. A.; Peacock, A. C.; Healy, N.; Sparks, J. R.; Krishnamurthi, M.; Gopalan, V.; Badding, J. V. Nat. Photon. 2012, 6, 174. doi: 10.1038/nphoton.2011.352  doi: 10.1038/nphoton.2011.352

    57. [57]

      Koettig, F.; Novoa, D.; Tani, F.; Guenendi, M. C.; Cassataro, M.; Travers, J. C.; Russell, P. S. J. Nat. Commun. 2017, 8, 813. doi: 10.1038/s41467-017-00943-4  doi: 10.1038/s41467-017-00943-4

    58. [58]

      Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. Nature 2011, 474, 64. doi: 10.1038/nature10067  doi: 10.1038/nature10067

    59. [59]

      Luo, Z.; Zhou, M.; Weng, J.; Huang, G.; Xu, H.; Ye, C.; Cai, Z. Opt. Lett. 2010, 35, 3709. doi: 10.1364/ol.35.003709  doi: 10.1364/ol.35.003709

    60. [60]

      Song, Y. W.; Jang, S. Y.; Han, W. S.; Bae, M. K. Appl. Phys. Lett. 2010, 96, 051122. doi: 10.1063/1.3309669  doi: 10.1063/1.3309669

    61. [61]

      Liu, Z. B.; He, X.; Wang, D. N. Opt. Lett. 2011, 36, 3024. doi: 10.1364/ol.36.003024  doi: 10.1364/ol.36.003024

    62. [62]

      Choi, S. Y.; Jeong, H.; Hong, B. H.; Rotermund, F.; Yeom, D. I. Laser Phys. Lett. 2014, 11, 015101. doi: 10.1088/1612-2011/11/1/015101  doi: 10.1088/1612-2011/11/1/015101

    63. [63]

      Wang, H.; Xu, X.; Li, J.; Lin, L.; Sun, L.; Sun, X.; Zhao, S.; Tan, C.; Chen, C.; Dang, W.; et al. Adv. Mater. 2016, 28, 8968. doi: 10.1002/adma.201603579  doi: 10.1002/adma.201603579

    64. [64]

      Chen, K.; Zhou, X.; Cheng, X.; Qiao, R.; Cheng, Y.; Liu, C.; Xie, Y.; Yu, W.; Yao, F.; Sun, Z.; et al. Nat. Photon. 2019, 13, 754. doi: 10.1038/s41566-019-0492-5  doi: 10.1038/s41566-019-0492-5

    65. [65]

      Qi, Y.; Deng, B.; Guo, X.; Chen, S.; Gao, J.; Li, T.; Dou, Z.; Ci, H.; Sun, J.; Chen, Z.; et al. Adv. Mater. 2018, 30, 1704839. doi: 10.1002/adma.201704839  doi: 10.1002/adma.201704839

    66. [66]

      Ci, H.; Ren, H.; Qi, Y.; Chen, X.; Chen, Z.; Zhang, J.; Zhang, Y.; Liu, Z. Nano Res. 2018, 11, 3106. doi: 10.1007/s12274-017-1839-1  doi: 10.1007/s12274-017-1839-1

    67. [67]

      Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; Van Tendeloo, G.; Vanhulsel, A.; Van Haesendonck, C. Nanotechnology 2008, 19, 305604. doi: 10.1088/0957-4484/19/30/305604  doi: 10.1088/0957-4484/19/30/305604

    68. [68]

      Neyts, E. C.; van Duin, A. C. T.; Bogaerts, A. J. Am. Chem. Soc. 2012, 134, 1256. doi: 10.1021/ja2096317  doi: 10.1021/ja2096317

    69. [69]

      Wei, N.; Li, Q.; Cong, S.; Ci, H.; Song, Y.; Yang, Q.; Lu, C.; Li, C.; Zou, G.; Sun, J.; et al. J. Mater. Chem. C 2019, 7, 4813. doi: 10.1039/c9ta00299e  doi: 10.1039/c9ta00299e

    70. [70]

      Zhao, S.; Liu, X.; Xu, Z.; Ren, H.; Deng, B.; Tang, M.; Lu, L.; Fu, X.; Peng, H.; Liu, Z.; et al. Nano Lett. 2016, 16, 7731. doi: 10.1021/acs.nanolett.6b03829  doi: 10.1021/acs.nanolett.6b03829

    71. [71]

      Manikandan, A.; Lee, L.; Wang, Y. C.; Chen, C. W.; Chen, Y. Z.; Medina, H.; Tseng, J. Y.; Wang, Z. M.; Chueh, Y. L. J. Mater. Chem. C 2017, 5, 13320. doi: 10.1039/c7ta01767g  doi: 10.1039/c7ta01767g

    72. [72]

      Liao, L.; Lin, Y. C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X. Nature 2010, 467, 305. doi: 10.1038/nature09405  doi: 10.1038/nature09405

    73. [73]

      Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324, 1312. doi: 10.1126/science.1171245  doi: 10.1126/science.1171245

    74. [74]

      Jang, L. W.; Zhang, L.; Menghini, M.; Cho, H.; Hwang, J. Y.; Son, D. I.; Locquet, J. P.; Seo, J. W. Carbon 2018, 139, 666. doi: 10.1016/j.carbon.2018.07.033  doi: 10.1016/j.carbon.2018.07.033

    75. [75]

      Mehta, R.; Chugh, S.; Chen, Z. Nano Lett. 2015, 15, 2024. doi: 10.1021/nl504889t  doi: 10.1021/nl504889t

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    20. [20]

      Naiying Fan Chuanli Qin Guo Zhang Bin Wang Yan Wang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061

Metrics
  • PDF Downloads(127)
  • Abstract views(3105)
  • HTML views(631)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return