Citation: Wang Yunfei, Liu Jianhua, Yu Mei, Zhong Jinyan, Zhou Qisen, Qiu Junming, Zhang Xiaoliang. SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 200603. doi: 10.3866/PKU.WHXB202006030 shu

SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells

  • Corresponding author: Zhang Xiaoliang, xiaoliang.zhang@buaa.edu.cn
  • Received Date: 11 June 2020
    Revised Date: 14 July 2020
    Accepted Date: 26 July 2020
    Available Online: 31 July 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (51872014) and the Fundamental Research Funds for the Central Universities, China (YWF-20-BJ-J-637)the Fundamental Research Funds for the Central Universities, China YWF-20-BJ-J-637the National Natural Science Foundation of China 51872014

  • Perovskite solar cells (PSCs) have recently become one of the fastest-growing research fields. Furthermore, the PSCs that have a SnO2 nanoparticle layer as an electron transport layer (ETL) have received extensive attention. The SnO2-ETL layer can be prepared at a low temperature, which makes it suitable for flexible device development. However, the energy levels of the SnO2 layer do not sufficiently match the energy levels of the perovskite light-absorbing layer, which largely affects the charge carrier extraction and reduces the open current–voltage (Voc) of PSCs. Additionally, the interface between the ETL and perovskite layer always has defects, which cause charge recombination and affect the power conversion efficiency (PCE) of PSCs. Therefore, the interfacial engineering at the SnO2/perovskite layer is crucial to address these issues. Researchers are looking for suitable passivation materials that could align the energy band and decrease the defect density. Halide materials, such as KCl and NH4Cl, are promising solutions to solve these problems. However, the preparation process has to be explored, and the mechanism of halide ions at the interface is unclear. This study investigates the effects of SnO2 surface halogenation on the photovoltaic performance of PSCs in depth. The SnO2 surface was passivated using tetrabutylammonium chloride (TBAC), tetrabutylammonium bromide (TBAB), and tetrabutylammonium iodide (TBAI) and the concentration gradient of the passivation solution was studied. Extensive characterization of the perovskite layers and PSC devices demonstrated the positive effects of SnO2 surface halogenation on the SnO2/perovskite interfacial properties. The causes of improved performance of the interfacial-engineered devices were studied using charge carrier dynamics. Interfacial engineering was further investigated by performing first-principles calculations based on density functional theory (DFT) to determine the energy, structure, charge density, density of states, work function, etc. Experiments and theoretical calculations proved that TBAC could be an optimal passivation material for the SnO2 surface. Furthermore, the passivation effect became more apparent with the increase in solution concentration. TBAC could promote perovskite crystal growth, decrease defects at the interface, and increase the internal recombination resistance. Consequently, the photovoltaic performance of PSCs was improved. The halide ions on the SnO2 surface could interact with Sn atoms, which increase the charge density and achieves high-efficiency charge extraction. This work shows the significance of improving the photovoltaic performance of PSCs along with providing physical principles for the interfacial engineering of PSCs toward achieving high efficiency.
  • 加载中
    1. [1]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131 (17), 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    2. [2]

      https://www.nrel.gov/pv/cell-efficiency.html (Accessed on 11 December 2019).

    3. [3]

      Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. Energy Environ. Sci. 2014, 7 (1), 399. doi: 10.1039/C3EE43161D  doi: 10.1039/C3EE43161D

    4. [4]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    5. [5]

      Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Nat. Phys. 2015, 11, 582. doi: 10.1038/nphys3357  doi: 10.1038/nphys3357

    6. [6]

      Lin, Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P. Nat. Photon. 2014, 9, 106. doi: 10.1038/nphoton.2014.284  doi: 10.1038/nphoton.2014.284

    7. [7]

      Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628. doi: 10.1039/c3ta10518k  doi: 10.1039/c3ta10518k

    8. [8]

      Chen, J.; Park, N. G. Adv. Mater. 2018, 31 (47), 1803019. doi: 10.1002/adma.201803019  doi: 10.1002/adma.201803019

    9. [9]

      Tress, W.; Marinova, N.; Inganas, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M. Adv. Energy Mater. 2015, 5 (3), 6. doi: 10.1002/aenm.201400812  doi: 10.1002/aenm.201400812

    10. [10]

      Wang, N.; Zhao, K.; Ding, T.; Liu, W.; Ahmed, A. S.; Wang, Z.; Tian, M.; Sun, X. W.; Zhang, Q. Adv. Energy Mater. 2017, 7 (18), 1700522. doi: 10.1002/aenm.201700522  doi: 10.1002/aenm.201700522

    11. [11]

      Peng, J.; Wu, Y.; Ye, W.; Jacobs, D. A.; Shen, H.; Fu, X.; Wan, Y.; Duong, T.; Wu, N.; Barugkin, C.; et al. Energy Environ. Sci. 2017, 10 (8), 1792. doi: 10.1039/c7ee01096f  doi: 10.1039/c7ee01096f

    12. [12]

      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345 (6196), 542. doi: 10.1126/science.1254050  doi: 10.1126/science.1254050

    13. [13]

      Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; de Arquer, F. P. G.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C.; et al. Science 2017, 355 (6326), 722. doi: 10.1126/science.aai9081  doi: 10.1126/science.aai9081

    14. [14]

      Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; de Villers, B. J. T.; Sellinger, A.; Berry, J. J.; Luther, J. M. Nat. Energy 2018, 3 (1), 68. doi: 10.1038/s41560-017-0067-y  doi: 10.1038/s41560-017-0067-y

    15. [15]

      Li, Y.; Zhu, J.; Huang, Y.; Liu, F.; Lv, M.; Chen, S.; Hu, L.; Tang, J.; Yao, J.; Dai, S. RSC Adv. 2015, 5 (36), 28424. doi: 10.1039/C5RA01540E  doi: 10.1039/C5RA01540E

    16. [16]

      Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. J. Am. Chem. Soc. 2015, 137 (21), 6730. doi: 10.1021/jacs.5b01994  doi: 10.1021/jacs.5b01994

    17. [17]

      Jiang, Q.; Zhang, L. Q.; Wang, H. L.; Yang, X. L.; Meng, J. H.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Nat. Energy 2017, 2 (1), 1. doi: 10.1038/Nenergy.2016.177  doi: 10.1038/Nenergy.2016.177

    18. [18]

      Jung, K. H.; Seo, J. Y.; Lee, S.; Shin, H.; Park, N. G. J. Mater. Chem. A 2017, 5 (47), 24790. doi: 10.1039/c7ta08040a  doi: 10.1039/c7ta08040a

    19. [19]

      Xiong, L. B.; Guo, Y. X.; Wen, J.; Liu, H. R.; Yang, G.; Qin, P. L.; Fang, G. J. Adv. Funct. Mater. 2018, 28 (35), 1802757. doi: 10.1002/adfm.201802757  doi: 10.1002/adfm.201802757

    20. [20]

      Liu, X.; Tsai, K.W.; Zhu, Z.; Sun, Y.; Chueh, C. C.; Jen, A. K. Y. Adv. Mater. Interfaces 2016, 3 (13). doi: 10.1002/admi.201600122  doi: 10.1002/admi.201600122

    21. [21]

      Bu, T. L.; Li, J.; Zheng, F.; Chen, W. J.; Wen, X. M.; Ku, Z. L.; Peng, Y.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. Nat. Commun. 2018, 9, 4609. doi: 10.1038/s41467-018-07099-9  doi: 10.1038/s41467-018-07099-9

    22. [22]

      Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Zhu, X.; Xu, L.; Wang, P.; Cui, C.; Yang, D. ACS Nano 2017, 11 (9), 9176. doi: 10.1021/acsnano.7b04070  doi: 10.1021/acsnano.7b04070

    23. [23]

      Wang, C.; Zhao, D.; Grice, C. R.; Liao, W.; Yu, Y.; Cimaroli, A.; Shrestha, N.; Roland, P. J.; Chen, J.; Yu, Z.; et al. J. Mater. Chem. A 2016, 4 (31), 12080. doi: 10.1039/c6ta04503k  doi: 10.1039/c6ta04503k

    24. [24]

      Tao, C.; Neutzner, S.; Colella, L.; Marras, S.; Kandada, A. R. S.; Gandini, M.; De Bastiani, M.; Pace, G.; Manna, L.; Caironi, M.; et al. Energy Environ. Sci. 2015, 8 (8), 2365. doi: 10.1039/c5ee01720c  doi: 10.1039/c5ee01720c

    25. [25]

      Yang, D.; Yang, R. X.; Wang, K.; Wu, C. C.; Zhu, X. J.; Feng, J. S.; Ren, X. D.; Fang, G. J.; Priya, S.; Liu, S. Z. Nat. Commun. 2018, 9, 3239. doi: 10.1038/s41467-018-05760-x  doi: 10.1038/s41467-018-05760-x

    26. [26]

      Choi, K.; Lee, J.; Kim, H. I.; Park, C. W.; Kim, G.W.; Choi, H.; Park, S.; Park, S. A.; Park, T. Energy Environ. Sci. 2018, 11 (11), 3238. doi: 10.1039/C8EE02242A  doi: 10.1039/C8EE02242A

    27. [27]

      Liu, X.; Zhang, Y.; Shi, L.; Liu, Z.; Huang, J.; Yun, J. S.; Zeng, Y.; Pu, A.; Sun, K.; Hameiri, Z.; et al. Adv. Energy Mater. 2018, 8 (20), 1800138. doi: 10.1002/aenm.201800138  doi: 10.1002/aenm.201800138

    28. [28]

      Liu, Z.; Deng, K.; Hu, J.; Li, L. Angew. Chem. Int. Ed. 2019, 58 (33), 11497. doi: 10.1002/anie.201904945  doi: 10.1002/anie.201904945

    29. [29]

      Qiao, H. W.; Yang, S.; Wang, Y.; Chen, X.; Wen, T. Y.; Tang, L. J.; Cheng, Q.; Hou, Y.; Zhao, H.; Yang, H. G. Adv. Mater. 2019, 31 (5), 1804217. doi: 10.1002/adma.201804217  doi: 10.1002/adma.201804217

    30. [30]

      Zhang, B.; Su, J.; Guo, X.; Zhou, L.; Lin, Z.; Feng, L.; Zhang, J.; Chang, J.; Hao, Y. Adv. Sci. 2020, 7 (11), 1903044. doi: 10.1002/advs.201903044  doi: 10.1002/advs.201903044

    31. [31]

      Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6 (1), 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256(96)00008-0

    32. [32]

      Blöchl, P. E.; Först, C. J.; Schimpl, J. Bull. Mater. Sci. 2003, 26 (1), 33. doi: 10.1007/BF02712785  doi: 10.1007/BF02712785

    33. [33]

      Perdew; Burke; Wang. Phys. Rev. B 1996, 54 (23), 16533. doi: 10.1103/PhysRevB.54.16533  doi: 10.1103/PhysRevB.54.16533

    34. [34]

      Lin, W.; Zhang, Y. F.; Li, Y.; Chen, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2006, 22 (1), 76.  doi: 10.3866/pku.Whxb20060115

    35. [35]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132 (15), 19. doi: 10.1063/1.3382344  doi: 10.1063/1.3382344

    36. [36]

      Tang, W.; Sanville, E.; Henkelman, G. J. Phys. Condens. Matter 2009, 21 (8), 7. doi: 10.1088/0953-8984/21/8/084204  doi: 10.1088/0953-8984/21/8/084204

    37. [37]

      http://vaspkit.sourceforge.net (14 5 2020).

    38. [38]

      https://wiki.fysik.dtu.dk/ase/about.html (14 5 2020).

    39. [39]

      Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energy Environ. Sci. 2015, 8 (7), 2118. doi: 10.1039/c5ee01265a  doi: 10.1039/c5ee01265a

    40. [40]

      Fu, F.; Pisoni, S.; Jeangros, Q.; Sastre-Pellicer, J.; Kawecki, M.; Paracchino, A.; Moser, T.; Werner, J.; Andres, C.; Duchêne, L.; et al. Energy Environ. Sci. 2019, 12 (10), 3074. doi: 10.1039/c9ee02043h  doi: 10.1039/c9ee02043h

    41. [41]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348 (6240), 1234. doi: 10.1126/science.aaa9272  doi: 10.1126/science.aaa9272

    42. [42]

      Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; et al. Nature 2018, 555 (7697), 497. doi: 10.1038/nature25989  doi: 10.1038/nature25989

    43. [43]

      Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Energy Environ. Sci. 2017, 10 (2), 516. doi: 10.1039/c6ee02941h  doi: 10.1039/c6ee02941h

    44. [44]

      Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. Adv. Funct. Mater. 2014, 24 (45), 7102. doi: 10.1002/adfm.201401872  doi: 10.1002/adfm.201401872

    45. [45]

      Yang, C. H.; Tang, A. W.; Teng, F.; Jiang, K. J. Acta Phys. -Chim. Sin. 2018, 34 (11), 1197.  doi: 10.3866/PKU.WHXB201804097

    46. [46]

      Yan, L.; Xue, Q. F.; Liu, M. Y.; Zhu, Z. L.; Tian, J. J.; Li, Z. C.; Chen, Z.; Chen, Z. M.; Yan, H.; Yip, H. L.; Cao, Y. Adv. Mater. 2018, 30 (33), 1802509. doi: 10.1002/adma.201802509  doi: 10.1002/adma.201802509

    47. [47]

      Hu, W. P.; Zhou, W. R.; Lei, X. Y.; Zhou, P. C.; Zhang, M. M.; Chen, T.; Zeng, H. L.; Zhu, J.; Dai, S. Y.; Yang, S. H.; Yang, S. F. Adv. Mater. 2019, 31 (8), 12. doi: 10.1002/adma.201806095  doi: 10.1002/adma.201806095

    48. [48]

      Kim, H. S.; Jang, I. H.; Ahn, N.; Choi, M.; Guerrero, A.; Bisquert, J.; Park, N. G. J. Phys. Chem. Lett. 2015, 6 (22), 4633. doi: 10.1021/acs.jpclett.5b02273  doi: 10.1021/acs.jpclett.5b02273

    49. [49]

      Son, D. Y.; Kim, S. G.; Seo, J. Y.; Lee, S. H.; Shin, H.; Lee, D.; Park, N. G. J. Am. Chem. Soc. 2018, 140 (4), 1358. doi: 10.1021/jacs.7b10430  doi: 10.1021/jacs.7b10430

    50. [50]

      Liu, Q. P.; Huang, H. J.; Zhou, Y.; Duan, Y. D.; Sun, Q. W.; Lin, Y. Acta Phys. -Chim. Sin. 2012, 28 (3), 591.  doi: 10.3866/PKU.WHXB201112161

    51. [51]

      Minemoto, T.; Murata, M. Sol. Energy Mater. Sol. Cells 2015, 133, 8. doi: 10.1016/j.solmat.2014.10.036  doi: 10.1016/j.solmat.2014.10.036

    52. [52]

      Zhao, P.; Lin, Z.; Wang, J.; Yue, M.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. ACS Appl. Energy Mater. 2019, 2 (6), 4504. doi: 10.1021/acsaem.9b00755  doi: 10.1021/acsaem.9b00755

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    19. [19]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(22)
  • Abstract views(1527)
  • HTML views(457)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return