Citation: Liu Fanfan, Zhang Zhiwen, Ye Shufen, Yao Yu, Yu Yan. Challenges and Improvement Strategies Progress of Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200602. doi: 10.3866/PKU.WHXB202006021 shu

Challenges and Improvement Strategies Progress of Lithium Metal Anode

  • Corresponding author: Yu Yan, yanyumse@ustc.edu.cn
  • Received Date: 10 June 2020
    Revised Date: 1 July 2020
    Accepted Date: 1 July 2020
    Available Online: 8 July 2020

    Fund Project: the National Natural Science Foundation of China 51872277the National Natural Science Foundation of China U1910210The project was supported by the National Key R & D Research Program of China (2018YFB0905400), the National Natural Science Foundation of China (51622210, 51872277, U1910210), the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund, the CAS (DNL180310), and the Fundamental Research Funds for the Central Universities, China (Wk2060140026)the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund, the CAS DNL180310the National Key R & D Research Program of China 2018YFB0905400the National Natural Science Foundation of China 51622210the Fundamental Research Funds for the Central Universities, China Wk2060140026

  • The Li metal anode is considered the most promising anode for next-generation high energy density batteries owing to its high theoretical capacity and low electrode potential. The development of batteries with high energy density is essential to meet the growing demand for energy storage devices in the modern world. However, the Li metal anode has operational problems. The high activity of Li causes dendritic growth during the cycling process, which leads to the cracking of the SEI (solid-electrolyte interphase), increased side reactions, and formation of dead Li. Furthermore, if the growth of Li dendrites is left uncontrolled, it can penetrate the separator and create a short-circuit accompanied by thermal runaway. Additionally, the complete utilization of active Li is challenged by the infinite volume expansion of the Li anode. To improve the application scope of Li metal batteries, it is imperative to develop advanced strategies for inhibiting Li dendritic growth, enhancing the stability of the SEI, reducing the accumulation of dead Li, and buffering the volume expansion. Understanding the mechanisms and models of Li nucleation and growth provides insight into solving these problems. This review summarizes some of the important models of Li nucleation and growth such as the surface nucleating model, charge-induced model, SEI model, and deposition/dissolution model. These models aid comprehension of the Li nucleation and growth process under various conditions. This review also discusses the strategies explored in the literature for improving the electrodes (such as three-dimensional (3D) matrix), electrolyte, SEI, and separator to realize uniform deposition of Li and improved utilization of Li. The 3D matrix strategy for improving the electrode design explores various matrices including graphene-based, carbon fiber-based, porous metal-based, and powder-based for buffering the volume expansion and reducing the local current density. To improve the electrolyte, concentrated lithium salts and functional additives are employed to stabilize the SEI and inhibit dendritic growth by regulating the chemical composition of SEI and inducing the deposition of Li. With respect to improving the design of the SEI, strategies for the construction of inorganic or organic components with high ionic conductivity and stable structure are explored for even distribution of Li ions and to avoid SEI rupture. This can reduce electrolyte consumption and dead Li formation. The modification of the separator by functional nanocarbon layer can control the direction of dendritic growth, thereby preventing the penetration of dendrites into the separator and achieving a uniform Li deposition layer. Finally, all solid state Li metal batteries (ASSLMBs) are discussed that utilize ceramic and polymer electrolytes owing to high safety of the solid state electrolyte. Therefore, reducing the interfacial resistance and suppressing dendritic growth between the Li anode and the electrolyte is key for the practical applications of ASSLMBs. Overall, this review provides a summary and outlook for promoting the practical applications of Li metal batteries.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    3. [3]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    4. [4]

      Liang, Y.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W. C.; Huang, J. Q.; Yu, D. S.; Liu Y. L.; Titirici, M. M.; Chueh, Y.; L.; et al. InfoMat 2019, 1, 6. doi: 10.1002/inf2.12000  doi: 10.1002/inf2.12000

    5. [5]

      Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141  doi: 10.1038/nenergy.2016.141

    6. [6]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    7. [7]

      Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243. doi: 10.1039/c1ee01598b  doi: 10.1039/c1ee01598b

    8. [8]

      Lin, D. C.; Liu, Y. Y.; Cui, Y. Nat. Nanotech. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    9. [9]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    10. [10]

      Liu, S.; Yao, L.; Zhang, Q.; Li, L. L.; Hu, N. T.; Wei, L. M.; Wei, H. Acta Phys. -Chim. Sin. 2017, 33, 2339.  doi: 10.3866/PKU.WHXB201706021

    11. [11]

      Brandt, K. Solid State Ionics 1994, 69, 173. doi: 10.1016/0167-2738(94)90408-1  doi: 10.1016/0167-2738(94)90408-1

    12. [12]

      Whittingham, M. S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c  doi: 10.1021/cr020731c

    13. [13]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    14. [14]

      Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybutin, E.; Zhang, Y. H.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    15. [15]

      Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Adv. Mater. 2017, 29, 1700007. doi: 10.1002/adma.201700007  doi: 10.1002/adma.201700007

    16. [16]

      Liu, B.; Zhang, J. G.; Xu, W. Joule 2018, 2, 833. doi: 10.1016/j.joule.2018.03.008  doi: 10.1016/j.joule.2018.03.008

    17. [17]

      Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Nat. Energy 2016, 1, 1. doi: 10.1038/nenergy.2016.114  doi: 10.1038/nenergy.2016.114

    18. [18]

      Aurbach, D. J. Power Sources 2000, 89, 206. doi: 10.1016/s0378-7753(00)00431-6  doi: 10.1016/s0378-7753(00)00431-6

    19. [19]

      Sacci, R. L.; Black, J. M.; Balke, N.; Dudney, N. J.; More, K. L.; Unocic, R. R. Nano Lett. 2015, 15, 2011. doi: 10.1021/nl5048626  doi: 10.1021/nl5048626

    20. [20]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    21. [21]

      Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Adv. Sci. 2017, 4, 1600168. doi: 10.1002/advs.201600168  doi: 10.1002/advs.201600168

    22. [22]

      Yoshio, M.; Wang, H. Y.; Fukuda, K.; Hara, Y.; Adachi, Y. J. Electrochem. Soc. 2000, 147, 1245. doi: 10.1149/1.1393344  doi: 10.1149/1.1393344

    23. [23]

      Obrovac, M. N.; Christensen, L. Electrochem. Solid State Lett. 2004, 7, A93. doi: 10.1149/1.1652421  doi: 10.1149/1.1652421

    24. [24]

      Gregory, T. D.; Hoffman, R. J.; Winterton, R. C. J. Electrochem. Soc. 1990, 137, 775. doi: 10.1149/1.2086553  doi: 10.1149/1.2086553

    25. [25]

      Matsui, M. J. Power Sources 2011, 196, 7048. doi: 10.1016/j.jpowsour.2010.11.141  doi: 10.1016/j.jpowsour.2010.11.141

    26. [26]

      Ling, C.; Banerjee, D.; Matsui, M. Electrochim. Acta 2012, 76, 270. doi: 10.1016/j.electacta.2012.05.001  doi: 10.1016/j.electacta.2012.05.001

    27. [27]

      Jaeckle, M.; Gross, A. J. Chem. Phys. 2014, 141, 174710. doi: 10.1063/1.4901055  doi: 10.1063/1.4901055

    28. [28]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    29. [29]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Power Sources 1999, 81, 925. doi: 10.1016/s0378-7753(98)00242-0  doi: 10.1016/s0378-7753(98)00242-0

    30. [30]

      Yamaki, J.; Tobishima, S.; Hayashi, K.; Saito, K.; Nemoto, Y.; Arakawa, M. J. Power Sources 1998, 74, 219. doi: 10.1016/s0378-7753(98)00067-6  doi: 10.1016/s0378-7753(98)00067-6

    31. [31]

      Jeong, J. H.; Goldenfeld, N.; Dantzig, J. A. Phys. Rev. E 2001, 64, 041602. doi: 10.1103/PhysRevE.64.041602  doi: 10.1103/PhysRevE.64.041602

    32. [32]

      Okajima, Y.; Shibuta, Y.; Suzuki, T. Comput. Mater. Sci. 2010, 50, 118. doi: 10.1016/j.commatsci.2010.07.015  doi: 10.1016/j.commatsci.2010.07.015

    33. [33]

      Ely, D. R.; Garcia, R. E. J. Electrochem. Soc. 2013, 160, A662. doi: 10.1149/1.057304jes  doi: 10.1149/1.057304jes

    34. [34]

      Chazalviel, J. N. Phys. Rev. A 1990, 42, 7355. doi: 10.1103/PhysRevA.42.7355  doi: 10.1103/PhysRevA.42.7355

    35. [35]

      Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Nano Lett. 2008, 8, 2277. doi: 10.1021/nl800957b  doi: 10.1021/nl800957b

    36. [36]

      Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Mater. Today 2015, 18, 252. doi: 10.1016/j.mattod.2014.10.040  doi: 10.1016/j.mattod.2014.10.040

    37. [37]

      Chen, K.; Sun, Z. H.; Fang, R. P.; Li, F.; Chen, H. M. Acta Phys. -Chim. Sin. 2018, 34, 377.  doi: 10.3866/PKU.WHXB201709001

    38. [38]

      Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109  doi: 10.1103/RevModPhys.81.109

    39. [39]

      Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. ACS Nano 2011, 5, 5463. doi: 10.1021/nn2006249  doi: 10.1021/nn2006249

    40. [40]

      Nie, X.; Zhang, A.; Liu, Y.; Shen, C.; Chen, M.; Xu, C.; Liu, Q.; Cai, J.; Alfaraidi, A.; Zhou, C. Energy Storage Mater. 2019, 17, 341. doi: 10.1016/j.ensm.2018.09.028  doi: 10.1016/j.ensm.2018.09.028

    41. [41]

      Yi, J. S.; Chen, J. H.; Yang, Z.; Dai, Y.; Li, W. M.; Cui, J.; Ciucci, F.; Lu, Z. H.; Yang, C. L. Adv. Energy Mater. 2019, 9, 1901796. doi: 10.1002/aenm.201901796  doi: 10.1002/aenm.201901796

    42. [42]

      Zhang, R.; Wen, S. W.; Wang, N.; Qin, K. Q.; Liu, E. Z.; Shi, C. S.; Zhao, N. Q. Adv. Energy Mater. 2018, 8, 1800914. doi: 10.1002/aenm.201800914  doi: 10.1002/aenm.201800914

    43. [43]

      Liu, S.; Wang, A. X.; Li, Q. Q.; Wu, J. S.; Chiou, K.; Huang, J. X.; Luo, J. Y. Joule 2018, 2, 184. doi: 10.1016/j.joule.2017.11.004  doi: 10.1016/j.joule.2017.11.004

    44. [44]

      Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotech. 2016, 11, 626. doi: 10.1038/nnano.2016.32  doi: 10.1038/nnano.2016.32

    45. [45]

      Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi: 10.1002/adma.201504117  doi: 10.1002/adma.201504117

    46. [46]

      Yu, B. Z.; Tao, T.; Mateti, S.; Lu, S. G.; Chen, Y. Adv. Funct. Mater. 2018, 28, 1803023. doi: 10.1002/adfm.201803023  doi: 10.1002/adfm.201803023

    47. [47]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 7764. doi: 10.1002/anie.201702099  doi: 10.1002/anie.201702099

    48. [48]

      Wang, T. S.; Zhai, P. B.; Legut, D.; Wang, L.; Liu, X. P.; Li, B. X.; Dong, C. X.; Fan, Y. C.; Gong, Y. J.; Zhang, Q. Adv. Energy Mater. 2019, 9, 1804000. doi: 10.1002/aenm.201804000  doi: 10.1002/aenm.201804000

    49. [49]

      Zhai, P. B.; Wang, T. S.; Yang, W. W.; Cui, S. Q.; Zhang, P.; Nie, A.; Zhang, Q.; Gong, Y. J. Adv. Energy Mater. 2019, 9, 1804019. doi: 10.1002/aenm.201804019  doi: 10.1002/aenm.201804019

    50. [50]

      Wang, H. S.; Li, Y. Z.; Li, Y. B.; Liu, Y. Y.; Lin, D. C.; Zhu, C.; Chen, G. X.; Yang, A. K.; Yan, K.; Chen, H.; et al. Nano Lett. 2019, 19, 1326. doi: 10.1021/acs.nanolett.8b04906  doi: 10.1021/acs.nanolett.8b04906

    51. [51]

      Huang, G.; Han, J. H.; Zhang, F.; Wang, Z. Q.; Kashani, H.; Watanabe, K.; Chen, M. W. Adv. Mater. 2019, 31, 1805334. doi: 10.1002/adma.201805334  doi: 10.1002/adma.201805334

    52. [52]

      Jin, T.; Han, Q. Q.; Wang, Y. J.; Jiao, L. F. Small 2018, 14, 1703086. doi: 10.1002/smll.201703086  doi: 10.1002/smll.201703086

    53. [53]

      Ohsaki, T.; Kanda, M.; Aoki, Y.; Shiroki, H.; Suzuki, S. J. Power Sources 1997, 68, 102. doi: 10.1016/s0378-7753(97)02634-7  doi: 10.1016/s0378-7753(97)02634-7

    54. [54]

      Jiang, J.; Zhu, J. H.; Ai, W.; Fan, Z. X.; Shen, X. N.; Zou, C. J.; Liu, J. P.; Zhang, H.; Yu, T. Energy Environ. Sci. 2014, 7, 2670. doi: 10.1039/c4ee00602j  doi: 10.1039/c4ee00602j

    55. [55]

      Zuo, T. T.; Wu, X. W.; Yang, C. P.; Yin, Y. X.; Ye, H.; Li, N. W.; Guo, Y. G. Adv. Mater. 2017, 29, 1700389. doi: 10.1002/adma.201700389  doi: 10.1002/adma.201700389

    56. [56]

      Liu, L.; Yin, Y. X.; Li, J. Y.; Li, N. W.; Zeng, X. X.; Ye, H.; Guo, Y. G.; Wan, L. J. Joule 2017, 1, 563. doi: 10.1016/j.joule.2017.06.004  doi: 10.1016/j.joule.2017.06.004

    57. [57]

      Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Qi, L. Y.; Tang, H.; Zhang, Z. Y.; Liu, W.; Zhou, H. H. Energy Storage Mater. 2018, 15, 249. doi: 10.1016/j.ensm.2018.04.030  doi: 10.1016/j.ensm.2018.04.030

    58. [58]

      Liu, S. F.; Xia, X. H.; Yao, Z. J.; Wu, J. B.; Zhang, L. Y.; Deng, S. J.; Zhou, C. G.; Shen, S. H.; Wang, X. L.; Tu, J. P. Small Methods 2018, 2, 1800035. doi: 10.1002/smtd.201800035  doi: 10.1002/smtd.201800035

    59. [59]

      Yang, C. P.; Yao, Y. G.; He, S. M.; Xie, H.; Hitz, E.; Hu, L. B. Adv. Mater. 2017, 29, 1702714. doi: 10.1002/adma.201702714  doi: 10.1002/adma.201702714

    60. [60]

      Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Joule 2018, 2, 764. doi: 10.1016/j.joule.2018.02.001  doi: 10.1016/j.joule.2018.02.001

    61. [61]

      Xiang, J. W.; Yuan, L. X.; Shen, Y.; Cheng, Z. X.; Yuan, K.; Guo, Z. Z.; Zhang, Y.; Chen, X.; Huang, Y. H. Adv. Energy Mater. 2018, 8, 1802352. doi: 10.1002/aenm.201802352  doi: 10.1002/aenm.201802352

    62. [62]

      Liu, F. F.; Xu, R.; Hu, Z. X.; Ye, S. F.; Zeng, S. F.; Yao, Y.; Li, S. Q.; Yu, Y. Small 2019, 15, 1803734. doi: 10.1002/smll.201803734  doi: 10.1002/smll.201803734

    63. [63]

      Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z; Wang, K.; Yang, W. J.; et al. Adv. Mater. 2020, 32, 1905658. doi: 10.1002/adma.201905658  doi: 10.1002/adma.201905658

    64. [64]

      Zhou, Y.; Han, Y.; Zhang, H. T.; Sui, D.; Sun, Z. H.; Xiao, P. S.; Wang, X. T.; Ma, Y. F.; Chen, Y. S. Energy Storage Mater. 2018, 14, 222. doi: 10.1016/j.ensm.2018.04.006  doi: 10.1016/j.ensm.2018.04.006

    65. [65]

      Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C.; Hu, L. B. Adv. Energy Mater. 2018, 8, 1800635. doi: 10.1002/aenm.201800635  doi: 10.1002/aenm.201800635

    66. [66]

      Ye, S. F.; Liu, F. F.; Xu, R.; Yao, Y.; Zhou, X. F.; Feng, Y. Z.; Cheng, X. L.; Yu, Y. Small 2019, 15, 1903725. doi: 10.1002/smll.201903725  doi: 10.1002/smll.201903725

    67. [67]

      Liu, F. F.; Jin, Z. Z.; Hu, Z. X.; Zhang, Z. W.; Liu, W.; Yu, Y. Chem. Asian J. 2020, 15, 1057. doi: 10.1002/asia.201901668  doi: 10.1002/asia.201901668

    68. [68]

      Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992  doi: 10.1038/ncomms10992

    69. [69]

      Yue, X. Y.; Bao, J.; Yang, S. Y.; Luo, R. J.; Wang, Q. C.; Wu, X. J.; Shadike, Z.; Yang, X. Q.; Zhou, Y. N. Nano Energy 2020, 71, 104614. doi: 10.1016/j.nanoen.2020.104614  doi: 10.1016/j.nanoen.2020.104614

    70. [70]

      Go, W.; Kim, M. H.; Park, J.; Lim, C. H.; Joo, S. H.; Kim, Y.; Lee, H. W. Nano Lett. 2019, 19, 1504. doi: 10.1021/acs.nanolett.8b04106  doi: 10.1021/acs.nanolett.8b04106

    71. [71]

      Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Adv. Energy Mater. 2017, 7, 1700260. doi: 10.1002/aenm.201700260  doi: 10.1002/aenm.201700260

    72. [72]

      Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. doi: 10.1002/anie.201304762  doi: 10.1002/anie.201304762

    73. [73]

      Jin, S.; Xin, S.; Wang, L. J.; Du, Z. Z.; Cao, L. N.; Chen, J. F.; Kong, X. H.; Gong, M.; Lu, J. L.; Zhu, Y. W.; et al. Adv. Mater. 2016, 28, 9094. doi: 10.1002/adma.201602704  doi: 10.1002/adma.201602704

    74. [74]

      Jin, C. B.; Sheng, O. W.; Zhang, W. K.; Luo, J. M.; Yuan, H. D.; Yang, T.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; et al. Energy Storage Mater. 2018, 15, 218. doi: 10.1016/j.ensm.2018.04.001  doi: 10.1016/j.ensm.2018.04.001

    75. [75]

      Wu, H.; Wu, Q. P.; Chu, F. L.; Hu, J. L.; Cui, Y. H.; Yin, C. L.; Li, C. L. J. Power Sources 2019, 419, 72. doi: 10.1016/j.jpowsour.2019.02.033  doi: 10.1016/j.jpowsour.2019.02.033

    76. [76]

      Li, H. Y.; Cheng, Z.; Natan, A.; Hafez, A. M.; Cao, D. X.; Yang, Y.; Zhu, H. L. Small 2019, 15, 1804609. doi: 10.1002/smll.201804609  doi: 10.1002/smll.201804609

    77. [77]

      Yang, H.; Xu, R.; Gong, Y.; Yao, Y.; Gu, L.; Yu, Y. Nano Energy 2018, 48, 448. doi: 10.1016/j.nanoen.2018.04.006  doi: 10.1016/j.nanoen.2018.04.006

    78. [78]

      Yu, Y.; Chen, C. H.; Shui, J. L.; Xie, S. Angew. Chem. Int. Ed. 2005, 44, 7085. doi: 10.1002/anie.200501905  doi: 10.1002/anie.200501905

    79. [79]

      Zhang, M.; Xiang, L.; Galluzzi, M.; Jiang, C. L.; Zhang, S. Q.; Li, J. Y.; Tang, Y. B. Adv. Mater. 2019, 31, 1900826. doi: 10.1002/adma.201900826  doi: 10.1002/adma.201900826

    80. [80]

      Mazouzi, D.; Reyter, D.; Gauthier, M.; Moreau, P.; Guyomard, D.; Roue, L.; Lestriez, B. Adv. Energy Mater. 2014, 4, 1301718. doi: 10.1002/aenm.201301718  doi: 10.1002/aenm.201301718

    81. [81]

      Adair, K. R.; Iqbal, M.; Wang, C.; Zhao, Y.; Banis, M. N.; Li, R.; Zhang, L.; Yang, R.; Lu, S.; Sun, X. Nano Energy 2018, 54, 375. doi: 10.1016/j.nanoen.2018.10.002  doi: 10.1016/j.nanoen.2018.10.002

    82. [82]

      Qiu, H.; Tang, T.; Asif, M.; Huang, X.; Hou, Y. Adv. Funct. Mater. 2019, 29, 1808468. doi: 10.1002/adfm.201808468  doi: 10.1002/adfm.201808468

    83. [83]

      Yun, Q.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q. H. Adv. Mater. 2016, 28, 6932. doi: 10.1002/adma.201601409  doi: 10.1002/adma.201601409

    84. [84]

      Li, P. L.; Dong, X. L.; Li, C.; Liu, J. Y.; Liu, Y.; Feng, W. L.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Angew. Chem. Int. Ed. 2019, 58, 2093. doi: 10.1002/anie.201813905  doi: 10.1002/anie.201813905

    85. [85]

      Wang, L. M.; Tang, Z. F.; Lin, J.; He, X. D.; Chen, C. S.; Chen, C. H. J. Mater. Chem. A 2019, 7, 17376. doi: 10.1039/c9ta05357c  doi: 10.1039/c9ta05357c

    86. [86]

      Chi, S. S.; Liu, Y.; Song, W. L.; Fan, L. Z.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1700348. doi: 10.1002/adfm.201700348  doi: 10.1002/adfm.201700348

    87. [87]

      Zhou, Y.; Zhao, K.; Han, Y.; Sun, Z. H.; Zhang, H. T.; Xu, L. Q.; Ma, Y. F.; Chen, Y. S. J. Mater. Chem. A 2019, 7, 5712. doi: 10.1039/c8ta12064a  doi: 10.1039/c8ta12064a

    88. [88]

      Huang, Z. J.; Zhang, C.; Lv, W.; Zhou, G. M.; Zhang, Y. B.; Deng, Y. Q.; Wu, H. L.; Kang, F. Y.; Yang, Q. H. J. Mater. Chem. A 2019, 7, 727. doi: 10.1039/c8ta10341k  doi: 10.1039/c8ta10341k

    89. [89]

      Yang, G. H.; Chen, J. D.; Xiao, P. T.; Agboola, P. O.; Shakir, I.; Xu, Y. X. J. Mater. Chem. A 2018, 6, 9899. doi: 10.1039/c8ta02810a  doi: 10.1039/c8ta02810a

    90. [90]

      Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Wang, X. X.; Song, Y.; Fu, Z. W.; Wu, X. J.; Zhou, Y. N. Energy Storage Mater. 2019, 21, 180. doi: 10.1016/j.ensm.2018.12.007  doi: 10.1016/j.ensm.2018.12.007

    91. [91]

      Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. Energy Storage Mater. 2018, 14, 335. doi: 10.1016/j.ensm.2018.05.017  doi: 10.1016/j.ensm.2018.05.017

    92. [92]

      Ke, X.; Liang, Y. H.; Ou, L. H.; Liu, H. D.; Chen, Y. M.; Wu, W. L.; Cheng, Y. F.; Guo, Z. P.; Lai, Y. Q.; Liu, P.; et al. Energy Storage Mater. 2019, 23, 547. doi: 10.1016/j.ensm.2019.04.003  doi: 10.1016/j.ensm.2019.04.003

    93. [93]

      Ren, F. H.; Lu, Z. Y.; Zhang, H.; Huai, L. Y.; Chen, X. C.; Wu, S. D.; Peng, Z.; Wang, D. Y.; Ye, J. C. Adv. Funct. Mater. 2018, 28, 1805638. doi: 10.1002/adfm.201805638  doi: 10.1002/adfm.201805638

    94. [94]

      Lu, Z. Y.; Liang, Q. H.; Wang, B.; Tao, Y.; Zhao, Y. F.; Lv, W.; Liu, D. H.; Zhang, C.; Weng, Z.; Liang, J. C.; et al. Adv. Energy Mater. 2019, 9, 1803186. doi: 10.1002/aenm.201803186  doi: 10.1002/aenm.201803186

    95. [95]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058  doi: 10.1038/ncomms9058

    96. [96]

      Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Adv. Mater. 2017, 29, 1703729. doi: 10.1002/adma.201703729  doi: 10.1002/adma.201703729

    97. [97]

      Wu, S. L.; Zhang, Z. Y.; Lan, M. H.; Yang, S. R.; Cheng, J. Y.; Cai, J. J.; Shen, J. H.; Zhu, Y.; Zhang, K. L.; Zhang, W. J. Adv. Mater. 2018, 30, 1705830. doi: 10.1002/adma.201705830  doi: 10.1002/adma.201705830

    98. [98]

      An, Y. L..; Fei, H. F.; Zeng, G. F.; Xu, X. Y.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Nano Energy 2018, 47, 503. doi: 10.1016/j.nanoen.2018.03.036  doi: 10.1016/j.nanoen.2018.03.036

    99. [99]

      Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F.; et al. Angew. Chem. Int. Ed. 2019, 58, 1094. doi: 10.1002/anie.201811955  doi: 10.1002/anie.201811955

    100. [100]

      Xu, T. H.; Gao, P.; Li, P. R.; Xia, K.; Han, N.; Deng, J.; Li, Y. G.; Lu, J. Adv. Energy Mater. 2020, 10, 1902343. doi: 10.1002/aenm.201902343  doi: 10.1002/aenm.201902343

    101. [101]

      Ouyang, Y.; Cui, C.; Guo, Y. P.; Wei, Y. Q.; Zhai, T. Y.; Li, H. Q. ACS Appl. Mater. Interfaces 2020, 12, 25818. doi: 10.1021/acsami.0c04092  doi: 10.1021/acsami.0c04092

    102. [102]

      Tu, Z.; Choudhury, S.; Zachman, M. J.; Wei, S.; Zhang, K.; Kourkoutis, L. F.; Archer, L. A. Nat. Energy 2018, 3, 310. doi: 10.1038/s41560-018-0096-1  doi: 10.1038/s41560-018-0096-1

    103. [103]

      Wang, Y. L.; Shen, Y. B.; Du, Z. L.; Zhang, X. F.; Wang, K.; Zhang, H. Y.; Kang, T.; Guo, F.; Liu, C. H.; Wu, X. D.; et al. J. Mater. Chem. A 2017, 5, 23434. doi: 10.1039/c7ta08531a  doi: 10.1039/c7ta08531a

    104. [104]

      Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Energy Environ. Sci. 2015, 8, 1837. doi: 10.1039/c5ee00762c  doi: 10.1039/c5ee00762c

    105. [105]

      Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Adv. Mater. 2017, 29, 1605820. doi: 10.1002/adma.201605820  doi: 10.1002/adma.201605820

    106. [106]

      Zhu, M. Q.; Li, B.; Li, S. M.; Du, Z. G.; Gong, Y. J.; Yang, S. B. Adv. Energy Mater. 2018, 8, 1703505. doi: 10.1002/aenm.201703505  doi: 10.1002/aenm.201703505

    107. [107]

      Wang, T. S.; Liu, X.; Zhao, X.; He, P.; Nan, C. W.; Fan, L. Z. Adv. Funct. Mater. 2020, 30, 2000786. doi: 10.1002/adfm.202000786  doi: 10.1002/adfm.202000786

    108. [108]

      Qian, J.; Li, Y.; Zhang, M. L.; Luo, R.; Wang, F. J.; Ye, Y. S.; Xing, Y.; Li, W. L.; Qu, W. J.; Wang, L. L.; et al. Nano Energy 2019, 60, 866. doi: 10.1016/j.nanoen.2019.04.030  doi: 10.1016/j.nanoen.2019.04.030

    109. [109]

      Zhang, T.; Lu, H. C.; Yang, J.; Xu, Z. X.; Wang, J. L.; Hirano, S. I.; Guo, Y. S.; Liang, C. D. ACS Nano 2020, 14, 5618. doi: 10.1021/acsnano.9b10083  doi: 10.1021/acsnano.9b10083

    110. [110]

      Zhao, L. F.; Wang, W. H.; Zhao, X. X.; Hou, Z.; Fan, X. K.; Liu, Y. L.; Quan, Z. W. ACS Appl. Energy Mater. 2019, 2, 2692. doi: 10.1021/acsaem.9b00014  doi: 10.1021/acsaem.9b00014

    111. [111]

      Jin, S.; Sun, Z. W.; Guo, Y. L.; Qi, Z. K, ; Guo, C. K.; Kong, X. H.; Zhu, Y. W.; Ji, H. X. Adv. Mater. 2017, 29, 1700783. doi: 10.1002/adma.201700783  doi: 10.1002/adma.201700783

    112. [112]

      Jiang, G. Y.; Jiang, N.; Zheng, N.; Chen, X.; Mao, J. Y.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. Energy Storage Mater. 2019, 23, 181. doi: 10.1016/j.ensm.2019.05.014  doi: 10.1016/j.ensm.2019.05.014

    113. [113]

      Li, Q.; Zhu, S. P.; Lu, Y. Y. Adv. Funct. Mater. 2017, 27, 1606422. doi: 10.1002/adfm.201606422  doi: 10.1002/adfm.201606422

    114. [114]

      Guo, F.; Wang, Y. L.; Kang, T.; Liu, C. H.; Shen, Y. B.; Lu, W.; Wu, X. D.; Chen, L. W. Energy Storage Mater. 2018, 15, 116. doi: 10.1016/j.ensm.2018.03.018  doi: 10.1016/j.ensm.2018.03.018

    115. [115]

      Qiu, H. L.; Tang, T. Y.; Asif, M.; Li, W.; Zhang, T.; Hou, Y. L. Nano Energy 2019, 65, 103989. doi: 10.1016/j.nanoen.2019.103989  doi: 10.1016/j.nanoen.2019.103989

    116. [116]

      Jie, Y. L.; Ren, X. D.; Cao, R. G.; Cai, W. B.; Jiao, S. H. Adv. Funct. Mater. 2020, 30, 1910777. doi: 10.1002/adfm.201910777  doi: 10.1002/adfm.201910777

    117. [117]

      Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g  doi: 10.1021/cr030203g

    118. [118]

      Wang, S. M.; Qu, J. Y.; Wu, F.; Yan, K.; Zhang, C. Z. ACS Appl. Mater. Interfaces 2020, 12, 8366. doi: 10.1021/acsami.9b23251  doi: 10.1021/acsami.9b23251

    119. [119]

      Xiao, L. F.; Zeng, Z. Q.; Liu, X. W.; Fang, Y. J.; Jiang, X. Y.; Shao, Y. Y.; Zhuang, L.; Ai, X. P.; Yang, H. X.; Cao, Y. L.; et al. ACS Energy Lett. 2019, 4, 483. doi: 10.1021/acsenergylett.8b02527  doi: 10.1021/acsenergylett.8b02527

    120. [120]

      Liu, B.; Xu, W.; Yan, P. F.; Kim, S. T.; Engelhard, M. H.; Sun, X. L.; Mei, D. H.; Cho, J.; Wang, C. M.; Zhang, J. G. Adv. Energy Mater. 2017, 7, 1770074. doi: 10.1002/aenm.201770074  doi: 10.1002/aenm.201770074

    121. [121]

      Chen, W. J.; Li, B. Q.; Zhao, C. X.; Zhao, M.; Yuan, T. Q.; Sun, R. C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 1912701. doi: 10.1002/anie.201912701  doi: 10.1002/anie.201912701

    122. [122]

      Li, X.; Zheng, J. M.; Ren, X. D.; Engelhard, M. H.; Zhao, W. G.; Li, Q. Y.; Zhang, J. G.; Xu, W. Adv. Energy Mater. 2018, 8, 1703022. doi: 10.1002/aenm.201703022  doi: 10.1002/aenm.201703022

    123. [123]

      Zhang, H.; Gebresilassie Eshetu, G.; Judez, X.; Li, C. M.; Rodriguez-Martinez, L. M.; Armand, M. Angew. Chem. Int. Ed. 2018, 57, 15002. doi: 10.1002/anie.201712702  doi: 10.1002/anie.201712702

    124. [124]

      Ran, Q.; Sun, T. Y.; Han, C. Y.; Zhang, H. N.; Yan, J.; Wang, J. L. Acta Phys. -Chim. Sin. 2020, 36, 1912068.  doi: 10.3866/PKU.WHXB201912068

    125. [125]

      Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4, 269. doi: 10.1038/s41560-019-0336-z  doi: 10.1038/s41560-019-0336-z

    126. [126]

      Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S. Y.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K.; et al. Chem 2018, 4, 174. doi: 10.1016/j.chempr.2017.10.017  doi: 10.1016/j.chempr.2017.10.017

    127. [127]

      Zheng, J.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J. Adv. Sci. 2017, 4, 1700032. doi: 10.1002/advs.201700032  doi: 10.1002/advs.201700032

    128. [128]

      Liu, B.; Xu, W.; Yan, P. F.; Sun, X. L.; Bowden, M. E.; Read, J.; Qian, J. F.; Mei, D. H.; Wang, C. M.; Zhang, J. G. Adv. Funct. Mater. 2016, 26, 605. doi: 10.1002/adfm.201503697  doi: 10.1002/adfm.201503697

    129. [129]

      Yu, L.; Chen, S. R.; Lee, H.; Zhang, L. C.; Engelhard, M. H.; Li, Q. Y.; Jiao, S. H.; Liu, J.; Xu, W.; Zhang, J. G. ACS Energy Lett. 2018, 3, 2059. doi: 10.1021/acsenergylett.8b00935  doi: 10.1021/acsenergylett.8b00935

    130. [130]

      Zhang, X. Q.; Chen, X.; Hou, L. P.; Li, B. Q.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. ACS Energy Lett. 2019, 4, 411. doi: 10.1021/acsenergylett.8b02376  doi: 10.1021/acsenergylett.8b02376

    131. [131]

      Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B. J. Phys. Chem. C 2007, 111, 7411. doi: 10.1021/jp068691u  doi: 10.1021/jp068691u

    132. [132]

      Wang, Z. X.; Sun, C. G.; Shi, Y.; Qi, F. L.; Wei, Q. W.; Li, X.; Sun, Z. H.; An, B.; Li, F. J. Power Sources 2019, 439, 227073. doi: 10.1016/j.jpowsour.2019.227073  doi: 10.1016/j.jpowsour.2019.227073

    133. [133]

      Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    134. [134]

      Qiu, F.; Li, X.; Deng, H.; Wang, D.; Mu, X.; He, P.; Zhou, H. Adv. Energy Mater. 2019, 9, 1803372. doi: 10.1002/aenm.201803372  doi: 10.1002/aenm.201803372

    135. [135]

      Haregewoin, A. M.; Wotango, A. S.; Hwang, B. J. Energy Environ. Sci. 2016, 9, 1955. doi: 10.1039/c6ee00123h  doi: 10.1039/c6ee00123h

    136. [136]

      Zhao, H. J.; Yu, X. Q.; Li, J. D.; Li, B.; Shao, H. Y.; Li, L.; Deng, Y. H. J. Mater. Chem. A 2019, 7, 8700. doi: 10.1039/c9ta00126c  doi: 10.1039/c9ta00126c

    137. [137]

      McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. D. J. Power Sources 1999, 81, 20. doi: 10.1016/s0378-7753(98)00201-8  doi: 10.1016/s0378-7753(98)00201-8

    138. [138]

      Profatilova, I. A.; Kim, S. S.; Choi, N. S. Electrochim. Acta 2009, 54, 4445. doi: 10.1016/j.electacta.2009.03.032  doi: 10.1016/j.electacta.2009.03.032

    139. [139]

      Schiele, A.; Breitung, B.; Hatsukade, T.; Berkes, B. B.; Hartmann, P.; Janek, J.; Brezesinski, T. ACS Energy Lett. 2017, 2, 2228. doi: 10.1021/acsenergylett.7b00619  doi: 10.1021/acsenergylett.7b00619

    140. [140]

      Rezqita, A.; Sauer, M.; Foelske, A.; Kronberger, H.; Trifonova, A. Electrochim. Acta 2017, 247, 600. doi: 10.1016/j.electacta.2017.06.128  doi: 10.1016/j.electacta.2017.06.128

    141. [141]

      Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; et al. J. Power Sources 2002, 108, 128. doi: 10.1016/s0378-7753(02)00012-5  doi: 10.1016/s0378-7753(02)00012-5

    142. [142]

      Leggesse, E. G.; Jiang, J. C. J. Phys. Chem. A 2012, 116, 11025. doi: 10.1021/jp3081996  doi: 10.1021/jp3081996

    143. [143]

      Ren, F.; Zuo, W.; Yang, X.; Lin, M.; Xu, L.; Zhao, W.; Zheng, S.; Yang, Y. J. Phys. Chem. C 2019, 123, 5871. doi: 10.1021/acs.jpcc.8b12000  doi: 10.1021/acs.jpcc.8b12000

    144. [144]

      Sun, H. H.; Dolocan, A.; Weeks, J. A.; Rodriguez, R.; Heller, A.; Mullins, C. B. J. Mater. Chem. A 2019, 7, 17782. doi: 10.1039/c9ta05063a  doi: 10.1039/c9ta05063a

    145. [145]

      Li, C.; Gu, L.; Maier, J. Adv. Funct. Mater. 2012, 22, 1145. doi: 10.1002/adfm.201101798  doi: 10.1002/adfm.201101798

    146. [146]

      Cui, C.; Yang, C.; Eidson, N.; Chen, J.; Han, F.; Chen, L.; Luo, C.; Wang, P. F.; Fan, X.; Wang, C. Adv. Mater. 2020, 32, 1906427. doi: 10.1002/adma.201906427  doi: 10.1002/adma.201906427

    147. [147]

      Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1605989. doi: 10.1002/adfm.201605989  doi: 10.1002/adfm.201605989

    148. [148]

      Adams, B. D.; Carino, E. V.; Connell, J. G.; Han, K. S.; Cao, R.; Chen, J.; Zheng, J.; Li, Q.; Mueller, K. T.; Henderson, W. A.; et al. Nano Energy 2017, 40, 607. doi: 10.1016/j.nanoen.2017.09.015  doi: 10.1016/j.nanoen.2017.09.015

    149. [149]

      Zhang, S. S. Electrochim. Acta 2012, 70, 344. doi: 10.1016/j.electacta.2012.03.081  doi: 10.1016/j.electacta.2012.03.081

    150. [150]

      Zhang, S. S. J. Power Sources 2016, 322, 99. doi: 10.1016/j.jpowsour.2016.05.009  doi: 10.1016/j.jpowsour.2016.05.009

    151. [151]

      Shi, Q.; Zhong, Y.; Wu, M.; Wang, H.; Wang, H. Proc. Natl. Acad. Sci. U S A 2018, 115, 5676. doi: 10.1073/pnas.1803634115  doi: 10.1073/pnas.1803634115

    152. [152]

      Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 14055. doi: 10.1002/anie.201807034  doi: 10.1002/anie.201807034

    153. [153]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    154. [154]

      Ren, X. D.; Zhang, Y. H.; Engelhard, M. H.; Li, Q. Y.; Zhang, J. G.; Xu, W. ACS Energy Lett. 2018, 3, 14. doi: 10.1021/acsenergylett.7b00982  doi: 10.1021/acsenergylett.7b00982

    155. [155]

      Xiang, H.; Shi, P.; Bhattacharya, P.; Chen, X.; Mei, D.; Bowden, M. E.; Zheng, J.; Zhang, J. G.; Xu, W. J. Power Sources 2016, 318, 170. doi: 10.1016/j.jpowsour.2016.04.017  doi: 10.1016/j.jpowsour.2016.04.017

    156. [156]

      Li, S. Y.; Zhao, D. N.; Wang, P.; Cui, X. L.; Tang, F. J. Electrochim. Acta 2016, 222, 668. doi: 10.1016/j.electacta.2016.11.022  doi: 10.1016/j.electacta.2016.11.022

    157. [157]

      Yan, C.; Cheng, X. B.; Zhao, C. Z.; Huang, J. Q.; Yang, S. T.; Zhang, Q. J. Power Sources 2016, 327, 212. doi: 10.1016/j.jpowsour.2016.07.056  doi: 10.1016/j.jpowsour.2016.07.056

    158. [158]

      Huang, Z. M.; Ren, J.; Zhang, W.; Xie, M. L.; Li, Y. K..; Sun, D.; Shen, Y.; Huang, Y. H. Adv. Mater. 2018, 30, 1803270. doi: 10.1002/adma.201803270  doi: 10.1002/adma.201803270

    159. [159]

      Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R. G.; et al. Nano Lett. 2014, 14, 6889. doi: 10.1021/nl5039117  doi: 10.1021/nl5039117

    160. [160]

      Xiao, L.; Chen, X. L.; Cao, R. G.; Qian, J. F.; Xiang, H. F.; Zheng, J. M.; Zhang, J. G.; Xu, W. J. Power Sources 2015, 293, 1062. doi: 10.1016/j.jpowsour.2015.06.044  doi: 10.1016/j.jpowsour.2015.06.044

    161. [161]

      Ye, H.; Yin, Y. X.; Zhang, S. F.; Shi, Y.; Liu, L.; Zeng, X. X.; Wen, R.; Guo, Y. G.; Wan, L. J. Nano Energy 2017, 36, 411. doi: 10.1016/j.nanoen.2017.04.056  doi: 10.1016/j.nanoen.2017.04.056

    162. [162]

      Cheng, X. B.; Zhao, M. Q.; Chen, C.; Pentecost, A.; Maleski, K.; Mathis, T.; Zhang, X. Q.; Zhang, Q.; Jiang, J.; Gogotsi, Y. Nat. Commun. 2017, 8, 336. doi: 10.1038/s41467-017-00519-2  doi: 10.1038/s41467-017-00519-2

    163. [163]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi: 10.1002/advs.201500213  doi: 10.1002/advs.201500213

    164. [164]

      Chen, Y. Q.; Luo, Y.; Zhang, H. Z.; Qu, C.; Zhang, H. M.; Li, X. F. Small Methods 2019, 3, 1800551. doi: 10.1002/smtd.201800551  doi: 10.1002/smtd.201800551

    165. [165]

      Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M.; et al. Adv. Mater. 2015, 27, 6089. doi: 10.1002/adma.201504429  doi: 10.1002/adma.201504429

    166. [166]

      Kozen, A. C.; Lin, C. F.; Zhao, O.; Lee, S. B.; Rubloff, G. W.; Noked, M. Chem. Mater. 2017, 29, 6298. doi: 10.1021/acs.chemmater.7b01496  doi: 10.1021/acs.chemmater.7b01496

    167. [167]

      Shi, L.; Xu, A.; Zhao, T. ACS Appl. Mater. Interfaces 2017, 9, 1987. doi: 10.1021/acsami.6b14560  doi: 10.1021/acsami.6b14560

    168. [168]

      Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Adv. Mater. Interfaces 2018, 5, 1701097. doi: 10.1002/admi.201701097  doi: 10.1002/admi.201701097

    169. [169]

      Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Matter 2019, 1, 317. doi: 10.1016/j.matt.2019.05.016  doi: 10.1016/j.matt.2019.05.016

    170. [170]

      Zhao, J.; Liao, L.; Shi, F. F.; Lei, T.; Chen, G. X.; Pei, A.; Sun, J.; Yan, K.; Zhou, G. M.; Xie, J.; et al. J. Am. Chem. Soc. 2017, 139, 11550. doi: 10.1021/jacs.7b05251  doi: 10.1021/jacs.7b05251

    171. [171]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, 1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    172. [172]

      Wang, L.; Fu, S.; Zhao, T.; Qian, J.; Chen, N.; Li, L.; Wu, F.; Chen, R. J. Mater. Chem. A 2020, 8, 1247. doi: 10.1039/c9ta10965j  doi: 10.1039/c9ta10965j

    173. [173]

      Peng, Z.; Zhao, N.; Zhang, Z.; Wan, H.; Lin, H.; Liu, M.; Shen, C.; He, H.; Guo, X.; Zhang, J. G.; et al. Nano Energy 2017, 39, 662. doi: 10.1016/j.nanoen.2017.07.052  doi: 10.1016/j.nanoen.2017.07.052

    174. [174]

      Zhang, Y.; Wang, G.; Tang, L.; Wu, J.; Guo, B.; Zhu, M.; Wu, C.; Dou, S. X.; Wu, M. J. Mater. Chem. A 2019, 7, 25369. doi: 10.1039/c9ta09523c  doi: 10.1039/c9ta09523c

    175. [175]

      Wang, G.; Xiong, X.; Xie, D.; Fu, X.; Lin, Z.; Yang, C.; Zhang, K.; Liu, M. ACS Appl. Mater. Interfaces 2019, 11, 4962. doi: 10.1021/acsami.8b18101  doi: 10.1021/acsami.8b18101

    176. [176]

      Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. Nat. Energy 2017, 2, 17119. doi: 10.1038/nenergy.2017.119  doi: 10.1038/nenergy.2017.119

    177. [177]

      Ren, Y.; Qi, Z.; Zhang, C.; Yang, S.; Ma, X.; Liu, X.; Tan, X.; Sun, S.; Cao, Y. Comp. Mater. Sci. 2020, 176, 109535. doi: 10.1016/j.commatsci.2020.109535  doi: 10.1016/j.commatsci.2020.109535

    178. [178]

      Lu, Y.; Tu, Z.; Archer, L. A. Nat. Mater. 2014, 13, 961. doi: 10.1038/nmat4041  doi: 10.1038/nmat4041

    179. [179]

      Lu, Y.; Tu, Z.; Shu, J.; Archer, L. A. J. Power Sources 2015, 279, 413. doi: 10.1016/j.jpowsour.2015.01.030  doi: 10.1016/j.jpowsour.2015.01.030

    180. [180]

      Li, G.; Huang, Q.; He, X.; Gao, Y.; Wang, D.; Kim, S. H.; Wang, D. ACS Nano 2018, 12, 1500. doi: 10.1021/acsnano.7b08035  doi: 10.1021/acsnano.7b08035

    181. [181]

      Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y. M.; Cui, Y. Nat. Commun. 2015, 6, 7436. doi: 10.1038/ncomms8436  doi: 10.1038/ncomms8436

    182. [182]

      Cheng, X. B.; Yan, C.; Peng, H. J.; Huang, J. Q.; Yang, S. T.; Zhang, Q. Energy Storage Mater. 2018, 10, 199. doi: 10.1016/j.ensm.2017.03.008  doi: 10.1016/j.ensm.2017.03.008

    183. [183]

      Chen, H.; Pei, A.; Lin, D.; Xie, J.; Yang, A.; Xu, J.; Lin, K.; Wang, J.; Wang, H.; Shi, F.; et al. Adv. Energy Mater. 2019, 9, 1900858. doi: 10.1002/aenm.201900858  doi: 10.1002/aenm.201900858

    184. [184]

      Liu, F. F.; Wang, L. F.; Zhang, Z. W.; Shi, P. C.; Feng, Y. Z.; Yao, Y.; Ye, S. F.; Wang, H. Y.; Wu, X. J.; Yu, Y. Adv. Funct. Mater. 2020, 30, 2001607. doi: 10.1002/adfm.202001607  doi: 10.1002/adfm.202001607

    185. [185]

      Liao, K.; Wu, S.; Mu, X.; Lu, Q.; Han, M.; He, P.; Shao, Z.; Zhou, H. Adv. Mater. 2018, 30, 1705711. doi: 10.1002/adma.201705711  doi: 10.1002/adma.201705711

    186. [186]

      Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. Nat. Nanotech. 2018, 13, 521. doi: 10.1038/s41565-018-0095-1  doi: 10.1038/s41565-018-0095-1

    187. [187]

      Jing, H. K.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. J. Mater. Chem. A 2015, 3, 12213. doi: 10.1039/c5ta01490e  doi: 10.1039/c5ta01490e

    188. [188]

      Ren, F.; Li, Z.; Zhu, Y.; Huguet, P.; Deabate, S.; Wang, D.; Peng, Z. Nano Energy 2020, 73, 104746. doi: 10.1016/j.nanoen.2020.104746  doi: 10.1016/j.nanoen.2020.104746

    189. [189]

      Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    190. [190]

      Tang, W.; Yin, X.; Kang, S.; Chen, Z.; Tian, B.; Teo, S. L.; Wang, X.; Chi, X.; Loh, K. P.; Lee, H. W.; et al. Adv. Mater. 2018, 30, 1801745. doi: 10.1002/adma.201801745  doi: 10.1002/adma.201801745

    191. [191]

      Chu, F.; Hu, J.; Tian, J.; Zhou, X.; Li, Z.; Li, C. ACS Appl. Mater. Interfaces 2018, 10, 12678. doi: 10.1021/acsami.8b00989  doi: 10.1021/acsami.8b00989

    192. [192]

      Liu, Y.; Xiong, S.; Wang, J.; Jiao, X.; Li, S.; Zhang, C.; Song, Z.; Song, J. Energy Storage Mater. 2019, 19, 24. doi: 10.1016/j.ensm.2018.10.015  doi: 10.1016/j.ensm.2018.10.015

    193. [193]

      Liu, T.; Hu, J.; Li, C.; Wang, Y. ACS Appl. Energy Mater. 2019, 2, 4379. doi: 10.1021/acsaem.9b00573  doi: 10.1021/acsaem.9b00573

    194. [194]

      Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. Angew. Chem. Int. Ed. 2018, 57, 1505. doi: 10.1002/anie.201710806  doi: 10.1002/anie.201710806

    195. [195]

      Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Adv. Funct. Mater. 2018, 28, 1705838. doi: 10.1002/adfm.201705838  doi: 10.1002/adfm.201705838

    196. [196]

      Luo, J.; Fang, C. C.; Wu, N. L. Adv. Energy Mater. 2018, 8, 1701482. doi: 10.1002/aenm.201701482  doi: 10.1002/aenm.201701482

    197. [197]

      Zhu, B.; Jin, Y.; Hu, X.; Zheng, Q.; Zhang, S.; Wang, Q.; Zhu, J. Adv. Mater. 2017, 29, 1603755. doi: 10.1002/adma.201603755  doi: 10.1002/adma.201603755

    198. [198]

      Wang, G.; Chen, C.; Chen, Y.; Kang, X.; Yang, C.; Wang, F.; Liu, Y.; Xiong, X. Angew. Chem. Int. Ed. 2020, 59, 2055. doi: 10.1002/anie.201913351  doi: 10.1002/anie.201913351

    199. [199]

      Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. Adv. Mater. 2017, 29, 1605531. doi: 10.1002/adma.201605531  doi: 10.1002/adma.201605531

    200. [200]

      Lee, F.; Tsai, M. C.; Lin, M. H.; Ni'mah, Y. L.; Hy, S.; Kuo, C. Y.; Cheng, J. H.; Rick, J.; Su, W. N.; Hwang, B. J. J. Mater. Chem. A 2017, 5, 6708. doi: 10.1039/c6ta10755a  doi: 10.1039/c6ta10755a

    201. [201]

      Liu, W.; Li, W.; Zhuo, D.; Zheng, G.; Lu, Z.; Liu, K.; Cui, Y. ACS Cent. Sci. 2017, 3, 135. doi: 10.1021/acscentsci.6b00389  doi: 10.1021/acscentsci.6b00389

    202. [202]

      Kim, J. H.; Woo, H. S.; Kung, W. K.; Ryu, K. H.; Kim, D. W. ACS Appl. Mater. Interfaces 2016, 8, 32300. doi: 10.1021/acsami.6b10419  doi: 10.1021/acsami.6b10419

    203. [203]

      Yuan, Y.; Wu, F.; Bai, Y.; Li, Y.; Chen, G.; Wang, Z.; Wu, C. Energy Storage Mater. 2019, 16, 411. doi: 10.1016/j.ensm.2018.06.022  doi: 10.1016/j.ensm.2018.06.022

    204. [204]

      Kim, Y.; Koo, D.; Ha, S.; Jun, S. C.; Yim, T.; Kim, H.; Oh, S. K.; Kim, D. M.; Choi, A.; Kang, Y.; et al. ACS Nano 2018, 12, 4419. doi: 10.1021/acsnano.8b00348  doi: 10.1021/acsnano.8b00348

    205. [205]

      Lee, J. I.; Shin, M.; Hong, D.; Park, S. Adv. Energy Mater. 2019, 9, 1803722. doi: 10.1002/aenm.201803722  doi: 10.1002/aenm.201803722

    206. [206]

      Park, K.; Goodenough, J. B. Adv. Energy Mater. 2017, 7, 1700732. doi: 10.1002/aenm.201700732  doi: 10.1002/aenm.201700732

    207. [207]

      Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E. A.; Bahrami, B.; He, Q.; Qiao, H.; Smirnova, A. L.; Wu, J. J.; Qiao, Q.; et al. Energy Storage Mater. 2019, 18, 389. doi: 10.1016/j.ensm.2019.02.006  doi: 10.1016/j.ensm.2019.02.006

    208. [208]

      Liu, Y.; Liu, Q.; Xin, L.; Liu, Y.; Yang, F.; Stach, E. A.; Xie, J. Nat. Energy 2017, 2, 17083. doi: 10.1038/nenergy.2017.83  doi: 10.1038/nenergy.2017.83

    209. [209]

      Monroe, C.; Newman, J. J. Electrochem. Soc. 2003, 150, A1377. doi: 10.1149/1.1606686  doi: 10.1149/1.1606686

    210. [210]

      Li, C.; Liu, S.; Shi, C.; Liang, G.; Lu, Z.; Fu, R.; Wu, D. Nat. Commun. 2019, 10, 1363. doi: 10.1038/s41467-019-09211-z  doi: 10.1038/s41467-019-09211-z

    211. [211]

      Luo, W.; Zhou, L.; Fu, K.; Yang, Z.; Wan, J.; Manno, M.; Yao, Y.; Zhu, H.; Yang, B.; Hu, L. Nano Lett. 2015, 15, 6149. doi: 10.1021/acs.nanolett.5b02432  doi: 10.1021/acs.nanolett.5b02432

    212. [212]

      He, Y.; Chang, Z.; Wu, S.; Qiao, Y.; Bai, S.; Jiang, K.; He, P.; Zhou, H. Adv. Energy Mater. 2018, 8, 1802130. doi: 10.1002/aenm.201802130  doi: 10.1002/aenm.201802130

    213. [213]

      Wu, H.; Huang, Y.; Xu, S.; Zhang, W.; Wang, K.; Zong, M. Chem. Eng. J. 2017, 327, 855. doi: 10.1016/j.cej.2017.06.164  doi: 10.1016/j.cej.2017.06.164

    214. [214]

      Hu, M.; Ma, Q.; Yuan, Y.; Pan, Y.; Chen, M.; Zhang, Y.; Long, D. Chem. Eng. J. 2020, 388, 124258. doi: 10.1016/j.cej.2020.124258  doi: 10.1016/j.cej.2020.124258

    215. [215]

      Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Adv. Mater. 2018, 30, 1870122. doi: 10.1002/adma.201870122  doi: 10.1002/adma.201870122

    216. [216]

      Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Adv. Energy Mater. 2018, 8, 1702657. doi: 10.1002/aenm.201702657  doi: 10.1002/aenm.201702657

    217. [217]

      Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chem 2019, 5, 74. doi: 10.1016/j.chempr.2018.12.002  doi: 10.1016/j.chempr.2018.12.002

    218. [218]

      Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    219. [219]

      Mo, F.; Ruan, J.; Sun, S.; Lian, Z.; Yang, S.; Yue, X.; Song, Y.; Zhou, Y. N.; Fang, F.; Sun, G.; et al. Adv. Energy Mater. 2019, 9, 1902123. doi: 10.1002/aenm.201902123  doi: 10.1002/aenm.201902123

    220. [220]

      Cui, Y.; Liang, X.; Chai, J.; Cui, Z.; Wang, Q.; He, W.; Liu, X.; Liu, Z.; Cui, G.; Feng, J. Adv. Sci. 2017, 4, 1700174. doi: 10.1002/advs.201700174  doi: 10.1002/advs.201700174

    221. [221]

      Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Chem. Soc. Rev. 2017, 46, 797. doi: 10.1039/c6cs00491a  doi: 10.1039/c6cs00491a

    222. [222]

      Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 82. doi: 10.1021/jacs.7b10864  doi: 10.1021/jacs.7b10864

    223. [223]

      Duan, J.; Wu, W. Y.; Nolan, A. M.; Wang, T. R.; Wen, J. Y.; Hu, C. C.; Mo, Y. F.; Luo, W.; Huang, Y. H. Adv. Mater. 2019, 31, 1807243. doi: 10.1002/adma.201807243  doi: 10.1002/adma.201807243

    224. [224]

      Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Proc. Natl. Acad. Sci. U S A 2017, 114, 11069. doi: 10.1073/pnas.1708489114  doi: 10.1073/pnas.1708489114

    225. [225]

      Yamamoto, T.; Iwasaki, H.; Suzuki, Y.; Sakakura, M.; Fujii, Y.; Motoyama, M.; Iriyama, Y. Electrochem. Commun. 2019, 105, 106494. doi: 10.1016/j.elecom.2019.106494  doi: 10.1016/j.elecom.2019.106494

    226. [226]

      Hou, Z.; Yu, Y.; Wang, W.; Zhao, X.; Di, Q.; Chen, Q.; Chen, W.; Liu, Y.; Quan, Z. ACS Appl. Mater. Interfaces 2019, 11, 8148. doi: 10.1021/acsami.9b01521  doi: 10.1021/acsami.9b01521

    227. [227]

      Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. Nat. Energy 2020, 5, 348. doi: 10.1038/s41560-020-0604-y  doi: 10.1038/s41560-020-0604-y

    228. [228]

      Huang, Y.; Chen, B.; Duan, J.; Yang, F.; Wang, T.; Wang, Z.; Yang, W.; Hu, C.; Luo, W.; Huang, Y. Angew. Chem. Int. Ed. 2020, 59, 3699. doi: 10.1002/anie.201914417  doi: 10.1002/anie.201914417

    229. [229]

      Fu, K.; Gong, Y.; Fu, Z.; Xie, H.; Yao, Y.; Liu, B.; Carter, M.; Wachsman, E.; Hu, L. Angew. Chem. Int. Ed. 2017, 56, 14942. doi: 10.1002/anie.201708637  doi: 10.1002/anie.201708637

    230. [230]

      Yang, C.; Zhang, L.; Liu, B.; Xu, S.; Hamann, T.; McOwen, D.; Dai, J.; Luo, W.; Gong, Y.; Wachsman, E. D.; et al. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3770. doi: 10.1073/pnas.1719758115  doi: 10.1073/pnas.1719758115

    231. [231]

      Xu, H.; Li, Y.; Zhou, A.; Wu, N.; Xin, S.; Li, Z.; Goodenough, J. B. Nano Lett. 2018, 18, 7414. doi: 10.1021/acs.nanolett.8b03902  doi: 10.1021/acs.nanolett.8b03902

    232. [232]

      Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C.; et al. Energy Environ. Sci. 2020, 13, 1318. doi: 10.1039/D0EE00342E  doi: 10.1039/D0EE00342E

    233. [233]

      Yan, M.; Liang, J. Y.; Zuo, T. T.; Yin, Y. X.; Xin, S.; Tan, S. J.; Guo, Y. G.; Wan, L. J. Adv. Funct. Mater. 2020, 30, 1908047. doi: 10.1002/adfm.201908047  doi: 10.1002/adfm.201908047

    234. [234]

      Li, X.; Wang, D.; Wang, H.; Yan, H.; Gong, Z.; Yang, Y. ACS Appl. Mater. Interfaces 2019, 11, 22745. doi: 10.1021/acsami.9b05212  doi: 10.1021/acsami.9b05212

    235. [235]

      Duan, J.; Huang, L.; Wang, T.; Huang, Y.; Fu, H.; Wu, W.; Luo, W.; Huang, Y. Adv. Funct. Mater. 2020, 30, 1908701. doi: 10.1002/adfm.201908701  doi: 10.1002/adfm.201908701

    236. [236]

      Xie, M.; Lin, X.; Huang, Z.; Li, Y.; Zhong, Y.; Cheng, Z.; Yuan, L.; Shen, Y.; Lu, X.; Zhai, T.; et al. Adv. Funct. Mater. 2020, 30, 1905949. doi: 10.1002/adfm.201905949  doi: 10.1002/adfm.201905949

    237. [237]

      Cheng, Z.; Xie, M.; Mao, Y.; Ou, J.; Zhang, S.; Zhao, Z.; Li, J.; Fu, F.; Wu, J.; Shen, Y.; et al. Adv. Energy Mater. 2020, 10, 1904230. doi: 10.1002/aenm.201904230  doi: 10.1002/aenm.201904230

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    12. [12]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    13. [13]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(152)
  • Abstract views(6452)
  • HTML views(1415)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return