Citation: Jin Huidong, Xiong Likun, Zhang Xiang, Lian Yuebin, Chen Si, Lu Yongtao, Deng Zhao, Peng Yang. Cu-Based Catalyst Derived from Nitrogen-Containing Metal Organic Frameworks for Electroreduction of CO2[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 200601. doi: 10.3866/PKU.WHXB202006017 shu

Cu-Based Catalyst Derived from Nitrogen-Containing Metal Organic Frameworks for Electroreduction of CO2

  • Corresponding author: Lu Yongtao, sudalyt@suda.edu Peng Yang, ypeng@suda.edu.cn
  • These authors contributed equally.
  • Received Date: 9 June 2020
    Revised Date: 4 July 2020
    Accepted Date: 4 July 2020
    Available Online: 13 July 2020

    Fund Project: Six Talent Peak Programs in Jiangsu Province, China XCL-057The project was supported by the National Natural Science Foundation of China (21701118), Major Project of Natural Science Research in Universities of Jiangsu Province, China (18KJA480004), Six Talent Peak Programs in Jiangsu Province, China (XCL-057, XCL-062, TD-XCL-006)Major Project of Natural Science Research in Universities of Jiangsu Province, China 18KJA480004Six Talent Peak Programs in Jiangsu Province, China XCL-062Six Talent Peak Programs in Jiangsu Province, China TD-XCL-006the National Natural Science Foundation of China 21701118

  • With the development of human society and economy, the demand for energy resources has also increased rapidly. However, the use of traditional fossil energy leads to high amounts of carbon dioxide emissions, causing severe greenhouse effects. This, in turn, triggers a series of environmental problems. Harnessing renewable energy such as solar energy, wind energy, and hydropower to replace the traditional energy sources is very urgent. Conversion CO2 into value-added fuels and chemicals could be a useful strategy to mitigate the current energy and environmental crisis. It is well known that Cu-based materials are good electrocatalysts for the electrochemical reduction of CO2 (ECR-CO2). However, they suffer from some disadvantages such as high overpotential and poor selectivity and durability. Therefore, the development of copper based electrocatalysts with high activity and selectivity is essential.Metal-organic frameworks (MOFs) materials that have the advantages of large specific surface area, tunable pore size and porosity, and highly dispersed unsaturated metal centers can be used as electrocatalysts for CO2 reduction or as precursors for further preparation of catalysts with excellent performance. Through thermal decomposition in an inert atmosphere, metal ions in MOF can be transformed into metal clusters, metal oxides, or even metal mono-atoms. Meanwhile, organic ligands are carbonized into porous carbon materials. The addition of some heteroatoms such as B, N, P, and S to carbon materials has also been shown to be effective in changing the electron state and coordination structure of the catalysts. These heteroatoms combine with carbon atoms to form a new active site, denoted as M-X-C (M is the central metal ion and X is the mixed heteroatom) to enhance the catalytic activity of the ECR-CO2.Herein, pre-synthesized Cu-NBDC MOF (a Cu-based MOF synthesized by using 2-aminoterephthalic acid (NBDC) as ligand) is used as a precursor to anchor Cu2O/Cu on nitrogen doped porous carbon (Cu2O/Cu@NC) by annealing at different temperatures. XPS analysis shows that the Cu-N content in Cu2O/Cu@NC decreases with increasing annealing temperature. Investigation of the ECR-CO2 reveals that Cu2O/Cu@NC can inhibit the HER more effectively compared to Cu2O/Cu@C, thereby improving the overall catalytic activity and multi-electron product selectivity of the ECR-CO2. While the Faradic efficiency of formate (FEformate) increases with increasing temperature, those of ethylene and methane (FEC2H4 and FECH4, respectively) decreases with increasing temperature. Specifically, upon annealing at 400 ℃, the CO2 Faradic efficiency of Cu2O/Cu@NC-400 is higher than 86% (−1.4 to −1.6 V vs. RHE), including 20.4% of FEC2H4 (−1.4 V vs. RHE) and 23.9% of FECH4 (−1.6 V vs. RHE). By contrast, FECH4 (−1.6 V vs. RHE) in the presence of Cu2O/Cu@C-400 without nitrogen doping is only 2.33%, and no C2H4 is detected. These significant differences in the catalytic behavior can be attributed to the fact that Cu-N is conducive for the stable adsorption of the *CH2 intermediate during the ECR-CO2, thus inhibiting the evolution of H2. These results indicate that the pathway of the ECR-CO2 and its performance can be effectivel regulated by complexing nitrogen with Cu motifs.
  • 加载中
    1. [1]

      Bai, X. F.; Chen, W.; Wang, B. Y.; Feng, G. H.; Wei, W.; Jiao, Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388.  doi: 10.3866/PKU.WHXB201706131

    2. [2]

      Costentin, C.; Robert, M.; Saveant, J. M. Chem. Soc. Rev. 2013, 42, 2423. doi: 10.1039/TF9050100085  doi: 10.1039/TF9050100085

    3. [3]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc. Faraday. Trans. 1 1989, 85, 2309. doi: 10.1039/F19898502309  doi: 10.1039/F19898502309

    4. [4]

      Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 15, 897. doi: 10.1246/cl.1986.897  doi: 10.1246/cl.1986.897

    5. [5]

      Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. J. Phys. Chem. B 1997, 101, 7075. doi: 10.1021/jp970284i  doi: 10.1021/jp970284i

    6. [6]

      Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysShem 2017, 18, 3266. doi: 10.1002/cphc.201700736  doi: 10.1002/cphc.201700736

    7. [7]

      Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461p  doi: 10.1021/jz201461p

    8. [8]

      Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Norskov, J. K. J. Phys. Chem. Lett. 2013, 4, 388. doi: 10.1021/jz3021155  doi: 10.1021/jz3021155

    9. [9]

      Zhu, Q. G.; Sun, X. F.; Kang, X. C.; Ma, J.; Qian, Q. L.; Han, B. X. Acta Phys. -Chim. Sin. 2016, 32, 261.  doi: 10.3866/PKU.WHXB201512101

    10. [10]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5. doi: 10.1039/C2EE21234J  doi: 10.1039/C2EE21234J

    11. [11]

      Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560. doi: 10.1073/pnas.1711493114  doi: 10.1073/pnas.1711493114

    12. [12]

      Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.  doi: 10.3866/PKU.WHXB202006034

    13. [13]

      Gattrell, M.; Gupta, N.; Co, A. J. Electroanal. Chem. 2006, 594, 1. doi: 10.1016/j.jelechem.2006.05.013  doi: 10.1016/j.jelechem.2006.05.013

    14. [14]

      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Norskov, J. K. Energy Environ. Sci. 2010, 3, 1311. doi: 10.1039/C0EE00071J  doi: 10.1039/C0EE00071J

    15. [15]

      Baturina, O. A.; Lu, Q.; Padilla, M. A.; Xin, L.; Li, W.; Serov, A. ACS Catal. 2014, 4, 3682. doi: 10.1021/cs500537y  doi: 10.1021/cs500537y

    16. [16]

      Li, Y.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y.; Yang, P. Nano Lett. 2017, 17, 1312. doi: 10.1021/acs.nanolett.6b05287  doi: 10.1021/acs.nanolett.6b05287

    17. [17]

      Li, Q.; Zhu, W.; Fu, J.; Zhang, H.; Wu, G.; Sun, S. Nano Energy 2016, 24, 1. doi: 10.1016/j.nanoen.2016.03.024  doi: 10.1016/j.nanoen.2016.03.024

    18. [18]

      Ning, H.; Wang, W.; Mao, Q.; Zheng, S.; Yang, Z.; Zhao, Q.; Wu, M. Acta Phys. -Chim. Sin. 2018, 34, 938.  doi: 10.3866/PKU.WHXB201801263

    19. [19]

      Wang, J.; Li, Z.; Dong, C.; Feng, Y.; Yang, J.; Liu, H.; Du, X. ACS Appl. Mater. Interfaces 2019, 11, 2763. doi: 1021/acsami.8b20545

    20. [20]

      Ting, L. R. L.; Piqué, O.; Lim, S. Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B. S. ACS Catal. 2020, 10, 4059. doi: 10.1021/acscatal.9b05319  doi: 10.1021/acscatal.9b05319

    21. [21]

      Li, Y. C.; Wang, Z.; Yuan, T.; Nam, D. H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F. W.; de Arguer, F. P. G.; et al. J. Am. Chem. Soc. 2019, 141, 8584. doi: 10.1021/jacs.9b02945  doi: 10.1021/jacs.9b02945

    22. [22]

      Kottakkat, T.; Klingan, K.; Jiang, S.; Jovanov, Z. P.; Davies, V. H.; El-Nagar, G. A. M.; Dau, H.; Roth, C. ACS Appl. Mater. Interfaces 2019, 11, 14734. doi: 10.1021/acsami.8b22071  doi: 10.1021/acsami.8b22071

    23. [23]

      Zhang, C.; Chen, Z.; Lian, Y.; Chen, Y.; Li, Q.; Gu, Y.; Lu, Y.; Deng, Z.; Peng, Y. Acta Phys. -Chim. Sin. 2019, 35, 1404.  doi: 10.3866/PKU.WHXB201905030

    24. [24]

      Machan, C. W.; Chabolla, S. A.; Yin, J.; Gilson, M. K.; Tezcan, F. A.; Kubiak, C. P. J. Am. Chem. Soc. 2014, 136, 14598. doi: 10.1021/ja5085282  doi: 10.1021/ja5085282

    25. [25]

      Hinogami, R.; Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hashiba, H.; Yamada, Y. ECS Electrochem. Lett. 2012, 1, H17. doi: 10.1149/2.001204eel  doi: 10.1149/2.001204eel

    26. [26]

      Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Electrochem. Commun. 2012, 25, 70. doi: 10.1016/j.elecom.2012.09.018  doi: 10.1016/j.elecom.2012.09.018

    27. [27]

      Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castano, P.; Irabien, A. ChemSusChem 2017, 10, 1100. doi: 10.1002/cssc.201600693  doi: 10.1002/cssc.201600693

    28. [28]

      Kang, X.; Zhu, Q.; Sun, X.; Hu, J.; Zhang, J.; Liu, Z.; Han, B. Chem. Sci. 2016, 7, 266. doi: 10.1039/c5sc03291a  doi: 10.1039/c5sc03291a

    29. [29]

      Liu, Z. M. Acta Phys. -Chim. Sin. 2019, 35, 1307.  doi: 10.3866/PKU.WHXB201908014

    30. [30]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. ACS Catal. 2015, 5, 6302. doi: 10.1021/acscatal.5b01767  doi: 10.1021/acscatal.5b01767

    31. [31]

      Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. J. Am. Chem. Soc. 2015, 137, 14129. doi: 10.1021/jacs.5b08212  doi: 10.1021/jacs.5b08212

    32. [32]

      Chen, L.; Li, Y.; Xu, N.; Zhang, G. Carbon 2018, 132, 172. doi: 10.1016/j.carbon.2018.02.051  doi: 10.1016/j.carbon.2018.02.051

    33. [33]

      Ye, J.; Johnson, J. K. Catal. Sci. Tech. 2016, 6, 8392. doi: 10.1039/c6cy01245k  doi: 10.1039/c6cy01245k

    34. [34]

      Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Nano Lett. 2016, 16, 7645. doi: 10.1021/acs.nanolett.6b03637  doi: 10.1021/acs.nanolett.6b03637

    35. [35]

      Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. Nat. Mater. 2018, 17, 301. doi: 10.1038/s41563-018-0033-5  doi: 10.1038/s41563-018-0033-5

    36. [36]

      Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T. de Arquer, F. P. G.; Wang, Y.; Liang, Z.; Proppe, A. H.; et al. J. Am. Chem. Soc. 2018, 140, 11378. doi: 10.1021/jacs.8b06407  doi: 10.1021/jacs.8b06407

    37. [37]

      Qiu, Y. L.; Zhong, H. X.; Zhang, T. T.; Xu, W. B.; Su, P. P.; Li, X. F.; Zhang, H. M. ACS Appl. Mater. Interfaces 2018, 10, 2480. doi: 10.1021/acsami.7b15255  doi: 10.1021/acsami.7b15255

    38. [38]

      Wang, R. M.; Sun, X. H.; Ould-Chikh, S.; Osadchii, D.; Bai, F.; Kapteijn, F.; Gascon, J. ACS Appl. Mater. Interfaces 2018, 10, 14751. doi: 10.1021/acsami.8b02226  doi: 10.1021/acsami.8b02226

    39. [39]

      Zhou, W.; Jia, J.; Lu, J.; Yang, L.; Hou, D.; Li, G.; Chen, S. Nano Energy 2016, 28, 29. doi: 10.1016/j.nanoen.2016.08.027  doi: 10.1016/j.nanoen.2016.08.027

    40. [40]

      Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. ACS Catal. 2017, 7, 1520. doi: 10.1021/acscatal.6b03353  doi: 10.1021/acscatal.6b03353

    41. [41]

      Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z  doi: 10.1038/s41467-017-01035-z

    42. [42]

      Cheng, Y. S.; Chu, X. P.; Ling, M.; Li, N.; Wu, K. L.; Wu, F. H.; Li, H.; Yuan, G.; Wei, X. W. Catal. Sci. Tech. 2019, 9, 5668. doi: 10.1039/C9CY01131E  doi: 10.1039/C9CY01131E

    43. [43]

      Rostamnia, S.; Alamgholiloo, H.; Liu, X. J. Colloid Interface Sci. 2016, 469, 310. doi: 10.1016/j.jcis.2016.02.021  doi: 10.1016/j.jcis.2016.02.021

    44. [44]

      Wang, R.; Wang, K.; Wang, Z.; Song, H.; Wang, H.; Ji, S. J. Power Sources 2015, 297, 295. doi: 10.1016/j.jpowsour.2015.07.107  doi: 10.1016/j.jpowsour.2015.07.107

    45. [45]

      Zhao, K.; Liu, Y.; Quan, X.; Chen, S.; Yu, H. ACS Appl. Mater. Interfaces 2017, 9, 5302. doi: 10.1021/acsami.6b15402  doi: 10.1021/acsami.6b15402

    46. [46]

      Han, X.; He, X.; Sun, L.; Han, X.; Zhan, W.; Xu, J.; Wang, X.; Chen, J. ACS Catal. 2018, 8, 4, 3348-3356. doi: 10.1021/acscatal.7b04219  doi: 10.1021/acscatal.7b04219

    47. [47]

      Han, X.; He, X.; Wang, F.; Chen, J.; Xu, J.; Wang, X.; Han, X. J. Mater. Chem. A 2017, 5, 10220. doi: 10.1039/c7ta01909b  doi: 10.1039/c7ta01909b

    48. [48]

      Ishizuka, S.; Kato, S.; Maruyama, T.; Akimoto, K. Jpn. J. Appl. Phys. 2001, 40, 2765. doi: 10.1143/JJAP.40.2765  doi: 10.1143/JJAP.40.2765

    49. [49]

      Zheng, Y.; Cheng, P.; Xu, J.; Han, J.; Wang, D.; Hao, C.; Alanagh, H. R.; Long, C.; Shi, X.; Tang, Z. Nanoscale 2019, 11, 4911. doi: 10.1039/c8nr10236h  doi: 10.1039/c8nr10236h

    50. [50]

      Zhang, L. S.; Liang, X. Q.; Song, W. G.; Wu, Z. Y. Phys. Chem. Chem. Phys. 2010, 12, 12055. doi: 10.1039/c0cp00789g  doi: 10.1039/c0cp00789g

    51. [51]

      Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. Angew. Chem. Int. Ed. 2014, 53, 14235. doi: 10.1002/anie.201408990  doi: 10.1002/anie.201408990

    52. [52]

      Nie, X.; Luo, W.; Janik, M. J.; Asthagiri, A. J. Catal. 2014, 312, 108. doi: 10.1016/j.jcat.2014.01.013  doi: 10.1016/j.jcat.2014.01.013

    53. [53]

      Sharma, P. P.; Wu, J.; Yadav, R. M.; Liu, M.; Wright, C. J.; Tiwary, C. S.; Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X. D. Angew. Chem. Int. Ed. 2015, 54, 13701. doi: 10.1002/anie.201506062  doi: 10.1002/anie.201506062

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(54)
  • Abstract views(1913)
  • HTML views(593)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return