Citation: Yuhao Yin, Yang Shen, Hu Wang, Xiao Chen, Lin Shao, Wenyu Hua, Juan Wang, Yi Cui. In Situ Growth and Characterization of TiN/HfxZr1-xO2/TiN Ferroelectric Capacitors[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200601. doi: 10.3866/PKU.WHXB202006016 shu

In Situ Growth and Characterization of TiN/HfxZr1-xO2/TiN Ferroelectric Capacitors

  • Corresponding author: Yi Cui, ycui2015@sinano.ac.cn
  • Received Date: 8 June 2020
    Revised Date: 29 June 2020
    Accepted Date: 2 July 2020
    Available Online: 10 July 2020

  • HfO2-based ferroelectric capacitors, particularly TiN/HfxZr1-xO2/TiN metal insulator metal (MIM) capacitors, have attracted considerable attention as promising candidates in the new generation of nonvolatile memory applications, because of their excellent stability, high performance, and complementary metal oxide semiconductor (CMOS) compatibility. At the electrode interface of TiN/HfxZr1-xO2/TiN MIM ferroelectric devices, the existence of the TiOxNy layer, which was formed during HfxZr1-xO2 film crystallization and TiN oxidization, can affect interface/grain boundary energy, film stress, and conduction band offset at the TiN/HfxZr1-xO2 interface, thereby affecting the ferroelectric device performance. Because the electrical performance of TiN/HfxZr1-xO2/TiN capacitors depends on both the ferroelectric HfxZr1-xO2 thin films and electrode TiN/insulator HfxZr1-xO2 interface, it is essential to control the fabrication of the TiN/HfxZr1-xO2/TiN heterostructure. Herein, we report a new method for preparing HfxZr1-xO2 ferroelectric thin films, sandwiched between TiN electrodes, by atomic layer deposition (ALD) and using ultra high vacuum (UHV) sputtering equipment interconnected with an ultra-high vacuum system. The quasi in situ characterization by transmission electron microscopy (TEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and other analytical methods conducted in our study indicates that the surface of the bottom TiN electrode does not contain oxygen. Moreover, a flat signal for impurities at the interface suggests that the superior ferroelectric performance of HfxZr1-xO2-based device is mainly attributed to the pristine HfxZr1-xO2/TiN interface. Furthermore, the ferroelectric properties of TiN/HfxZr1-xO2/TiN heterostructures on silicon can be modulated by varying ZrO2 doping concentration and rapid thermal annealing (RTA) temperature, which can be well monitored and controlled by the interconnected system. We also investigate the ferroelectric properties of TiN/HfxZr1-xO2/TiN capacitors with different ZrO2 doping concentrations (30%–60% (x)) at room temperature by changing the ALD pulsing ratio within the vacuum interconnected system. Three identical 10 nm-thick Hf0.5Zr0.5O2 samples sandwiched between TiN electrodes are annealed in N2 ambient at 400, 450 and 600 ℃ for 5 min to investigate the effect of RTA on device performance. The evolution of P-E hysteresis at different applied voltages and RTA temperatures reveals that the saturation of P-E hysteresis and remanent polarization increase with RTA temperature. This increase is especially evident at low applied voltages such as 1.5 V. A higher remanent polarization of 21.5 μC·cm-2 than the previously reported value and a low coercive voltage of 1.35 V were achieved for the electric field of 3 MV·cm-1 by doping 50% (molar fraction, x) ZrO2 in HfO2 through RTA at 600 ℃ for film crystallization.
  • 加载中
    1. [1]

      Kittl, J.; Opsomer, K.; Popovici, M.; Menou, N.; Kaczer, B.; Wang, X.; Adelmann, C.; Pawlak, M.; Tomida, K.; Rothschild, A. Microelectron. Eng. 2009, 86, 1789. doi: 10.1016/j.mee.2009.03.045  doi: 10.1016/j.mee.2009.03.045

    2. [2]

      Schaeffer, J. K.; Samavedam, S. B.; Gilmer, D. C.; Dhandapani, V.; Tobin, P. J.; Mogab, J.; Nguyen, B. Y.; White, B. E.; Dakshina-Murthy, S.; Rai, R. S.; et al. J. Vac. Sci. Technol. B 2003, 21, 11. doi: 10.1116/1.1529650  doi: 10.1116/1.1529650

    3. [3]

      Muller, J.; Boöscke, T. S.; Schroöder, U.; Mueller, S.; Brauhaus, D.; Bottger, U.; Frey, L.; Mikolajick, T. Nano Lett. 2012, 12, 4318. doi: 10.1021/nl302049k  doi: 10.1021/nl302049k

    4. [4]

      Müller, J.; Böscke, T.; Bräuhaus, D.; Schröder, U.; Böttger, U.; Sundqvist, J.; Kücher, P.; Mikolajick, T.; Frey, L. Appl. Phys. Lett. 2011, 99, 112901. doi:10.1063/1.3636417  doi: 10.1063/1.3636417

    5. [5]

      Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Mueller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T. Adv. Mater. 2015, 27, 1811. doi: 10.1002/adma.201404531  doi: 10.1002/adma.201404531

    6. [6]

      Martin, D.; Müller, J.; Schenk, T.; Arruda, T. M.; Kumar, A.; Strelcov, E.; Yurchuk, E.; Müller, S.; Pohl, D.; Schröder, U. Adv. Mater. 2014, 26, 8198. doi: 10.1002/adma.201403115  doi: 10.1002/adma.201403115

    7. [7]

      Cheng, C. H.; Chin, A. IEEE Electron Device Lett. 2014, 35, 138. doi: 10.1109/led.2013.2290117  doi: 10.1109/led.2013.2290117

    8. [8]

      Mueller, S.; Müller, J.; Hoffmann, R.; Yurchuk, E.; Schlösser, T.; Boschke, R.; Paul, J.; Goldbach, M.; Herrmann, T.; Zaka, A. IEEE Trans. Electron Devices 2013, 60, 4199. doi: 10.1109/TED.2013.2283465  doi: 10.1109/TED.2013.2283465

    9. [9]

      Yurchuk, E.; Müller, J.; Paul, J.; Schlösser, T.; Martin, D.; Hoffmann, R.; Müeller, S.; Slesazeck, S.; Schröeder, U.; Boschke, R. IEEE Trans. Electron Devices 2014, 61, 3699. doi: 10.1109/TED.2014.2354833  doi: 10.1109/TED.2014.2354833

    10. [10]

      Park, M. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Hwang, C. S. Adv. Energy Mater. 2014, 4, 1400610. doi: 10.1002/aenm.201400610  doi: 10.1002/aenm.201400610

    11. [11]

      Böscke, T.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Appl. Phys. Lett. 2011, 99, 102903. doi: 10.1063/1.3634052  doi: 10.1063/1.3634052

    12. [12]

      Mueller, S.; Mueller, J.; Singh, A.; Riedel, S.; Sundqvist, J.; Schroeder, U.; Mikolajick, T. Adv. Funct. Mater. 2012, 22, 2412. doi: 10.1002/adfm.201103119  doi: 10.1002/adfm.201103119

    13. [13]

      Mueller, S.; Adelmann, C.; Singh, A.; Van Elshocht, S.; Schroeder, U.; Mikolajick, T. ECS J. Solid State Sci. Technol. 2012, 1, N123. doi: 10.1149/2.002301jss  doi: 10.1149/2.002301jss

    14. [14]

      Schroeder, U.; Richter, C.; Park, M. H.; Schenk, T.; Pešić, M.; Hoffmann, M.; Fengler, F. P.; Pohl, D.; Rellinghaus, B.; Zhou, C. Inorg. Chem. 2018, 57, 2752. doi: 10.1021/acs.inorgchem.7b03149  doi: 10.1021/acs.inorgchem.7b03149

    15. [15]

      Vulpe, S.; Nastase, F.; Dragoman, M.; Dinescu, A.; Romanitan, C.; Iftimie, S.; Moldovan, A.; Apostol, N. Appl. Surf. Sci. 2019, 483, 324. doi: 10.1016/j.apsusc.2019.03.166  doi: 10.1016/j.apsusc.2019.03.166

    16. [16]

      Müller, J.; Schröder, U.; Böscke, T.; Müller, I.; Böttger, U.; Wilde, L.; Sundqvist, J.; Lemberger, M.; Kücher, P.; Mikolajick, T. J. Appl. Phys. 2011, 110, 114113. doi: 10.1063/1.3667205  doi: 10.1063/1.3667205

    17. [17]

      Chernikova, A.; Kozodaev, M.; Markeev, A.; Negrov, D.; Spiridonov, M.; Zarubin, S.; Bak, O.; Buragohain, P.; Lu, H.; Suvorova, E. ACS Appl. Mater. Interfaces 2016, 8, 7232. doi: 10.1021/acsami.5b11653  doi: 10.1021/acsami.5b11653

    18. [18]

      Park, M. H.; Kim, H. J.; Kim, Y. J.; Lee, W.; Moon, T.; Kim, K. D.; Hwang, C. S. Appl. Phys. Lett. 2014, 105, 072902. doi: 10.1063/1.4893376  doi: 10.1063/1.4893376

    19. [19]

      Chernikova, A.; Kozodaev, M.; Markeev, A.; Matveev, Y.; Negrov, D.; Orlov, O. Microelectron. Eng. 2015, 147, 15. doi: 10.1016/j.mee.2015.04.024  doi: 10.1016/j.mee.2015.04.024

    20. [20]

      Hoffmann, M.; Schroeder, U.; Schenk, T.; Shimizu, T.; Funakubo, H.; Sakata, O.; Pohl, D.; Drescher, M.; Adelmann, C.; Materlik, R. J. Appl. Phys. 2015, 118, 072006. doi:10.1063/1.4927805  doi: 10.1063/1.4927805

    21. [21]

      Pešić, M.; Fengler, F. P. G.; Larcher, L.; Padovani, A.; Schenk, T.; Grimley, E. D.; Sang, X.; LeBeau, J. M.; Slesazeck, S.; Schroeder, U. Adv. Funct. Mater. 2016, 26, 4601. doi: 10.1002/adfm.201600590  doi: 10.1002/adfm.201600590

    22. [22]

      Kim, H. J.; Park, M. H.; Kim, Y. J.; Lee, Y. H.; Moon, T.; Do Kim, K.; Hyun, S. D.; Hwang, C. S. Nanoscale 2016, 8, 1383. doi: 10.1039/C5NR05339K  doi: 10.1039/C5NR05339K

    23. [23]

      Park, M. H.; Kim, H. J.; Kim, Y. J.; Lee, Y. H.; Moon, T.; Kim, K. D.; Hyun, S. D.; Hwang, C. S. Appl. Phys. Lett. 2015, 107, 192907. doi: 10.1063/1.4935588  doi: 10.1063/1.4935588

    24. [24]

      Schenk, T.; Schroeder, U.; Pešić, M.; Popovici, M.; Pershin, Y. V.; Mikolajick, T. ACS Appl. Mater. Interfaces 2014, 6, 19744. doi: 10.1021/am504837r  doi: 10.1021/am504837r

    25. [25]

      Schenk, T.; Hoffmann, M.; Ocker, J.; Pešić, M.; Mikolajick, T.; Schroeder, U. ACS Appl. Mater. Interfaces 2015, 7, 20224. doi: 10.1021/acsami.5b05773  doi: 10.1021/acsami.5b05773

    26. [26]

      Mittmann, T.; Materano, M.; Lomenzo, P. D.; Park, M. H.; Stolichnov, I.; Cavalieri, M.; Zhou, C.; Chung, C. C.; Jones, J. L.; Szyjka, T. Adv. Mater. Interfaces 2019, 6, 1900042. doi: 10.1002/admi.201900042  doi: 10.1002/admi.201900042

    27. [27]

      Pešić, M.; Knebel, S.; Cho, K.; Jung, C.; Chang, J.; Lim, H.; Kolomiiets, N.; Afanas'ev, V. V.; Mikolajick, T.; Schroeder, U. Solid·State Electron. 2016, 115, 133. doi: 10.1016/j.sse.2015.08.012  doi: 10.1016/j.sse.2015.08.012

    28. [28]

      Weinreich, W.; Shariq, A.; Seidel, K.; Sundqvist, J.; Paskaleva, A.; Lemberger, M.; Bauer, A. J. J. Vac. Sci. Technol. B 2013, 31, 01A109. doi: 10.1116/1.4768791  doi: 10.1116/1.4768791

    29. [29]

      Park, M. H.; Kim, H. J.; Kim, Y. J.; Lee, Y. H.; Moon, T.; Kim, K. D.; Hyun, S. D.; Fengler, F.; Schroeder, U.; Hwang, C. S. ACS Appl. Mater. Interfaces 2016, 8, 15466. doi: 10.1021/acsami.6b03586  doi: 10.1021/acsami.6b03586

    30. [30]

      Chen, K. Y.; Chen, P. H.; Wu, Y. H. In Excellent Reliability of Ferroelectric HfZrOx Free from Wake-up and Fatigue Effects by NH3 Plasma Treatment; 2017 Symposium on VLSI Circuits, IEEE: 2017; pp. T84.

    31. [31]

      Hyuk Park, M.; Joon Kim, H.; Jin Kim, Y.; Lee, W.; Kyeom Kim, H.; Seong Hwang, C. Appl. Phys. Lett. 2013, 102, 112914. doi: 10.1063/1.4798265  doi: 10.1063/1.4798265

    32. [32]

      Kim, H. J.; Park, M. H.; Kim, Y. J.; Lee, Y. H.; Jeon, W.; Gwon, T.; Moon, T.; Kim, K. D.; Hwang, C. S. Appl. Phys. Lett. 2014, 105, 192903. doi: 10.1063/1.4902072  doi: 10.1063/1.4902072

    33. [33]

      Batra, R.; Huan, T. D.; Rossetti, G. A., Jr.; Ramprasad, R. Chem. Mater. 2017, 29, 9102. doi: 10.1021/acs.chemmater.7b02835  doi: 10.1021/acs.chemmater.7b02835

    34. [34]

      Matveyev, Y.; Negrov, D.; Chernikova, A.; Lebedinskii, Y.; Kirtaev, R.; Zarubin, S.; Suvorova, E.; Gloskovskii, A.; Zenkevich, A. ACS Appl. Mater. Interfaces 2017, 9, 43370. doi: 10.1021/acsami.7b14369  doi: 10.1021/acsami.7b14369

    35. [35]

      Kim, K.; Park, M.; Kim, H.; Kim, Y.; Moon, T.; Lee, Y.; Hyun, S.; Gwon, T.; Hwang, C. J. Mater. Chem. C 2016, 4, 6864. doi: 10.1039/C6TC02003H  doi: 10.1039/C6TC02003H

    36. [36]

      Xu, L.; Nishimura, T.; Shibayama, S.; Yajima, T.; Migita, S.; Toriumi, A. Appl. Phys. Express 2016, 9, 091501. doi: 10.7567/APEX.9.091501  doi: 10.7567/APEX.9.091501

    37. [37]

      Ding, S. A.; Yang, H. Vaccum 2019, 56, 60. doi: 10.13385/j.cnki.vacuum.2019.06.11  doi: 10.13385/j.cnki.vacuum.2019.06.11

    38. [38]

      Sokolov, A. S.; Jeon, Y. R.; Kim, S.; Ku, B.; Lim, D.; Han, H.; Chae, M. G.; Lee, J.; Ha, B. G.; Choi, C. Appl. Surf. Sci. 2018, 434, 822. doi: 10.1016/j.apsusc.2017.11.016  doi: 10.1016/j.apsusc.2017.11.016

    39. [39]

      Lowther, J. E.; Dewhurst, J. K.; Leger, J. M.; Haines, J. Phys. Rev. B 1999, 60, 14485. doi: 10.1103/PhysRevB.60.14485  doi: 10.1103/PhysRevB.60.14485

    40. [40]

      Park, M. H.; Kim, H. J.; Kim, Y. J.; Lee, W.; Moon, T.; Hwang, C. S. Appl. Phys. Lett. 2013, 102, 242905. doi: 10.1063/1.4811483  doi: 10.1063/1.4811483

    41. [41]

      Hudec, B.; Wang, I.; Lai, W.; Chang, C.; Jancovic, P.; Frohlich, K.; Micusik, M.; Omastova, M.; Hou, T. J. Phys. D 2016, 49, 215102. doi: 10.1088/0022-3727/49/21/215102  doi: 10.1088/0022-3727/49/21/215102

    42. [42]

      Wang, Q.; Niu, G.; Roy, S.; Wang, Y.; Zhang, Y.; Wu, H.; Zhai, S.; Bai, W.; Shi, P.; Song, S. J. Mater. Chem. C 2019, 7, 12682. doi: 10.1039/C9TC04880D  doi: 10.1039/C9TC04880D

    43. [43]

      Niu, G.; Calka, P.; Huang, P.; Sharath, S. U.; Petzold, S.; Gloskovskii, A.; Frohlich, K.; Zhao, Y.; Kang, J.; Schubert, M. A. Mater. Res. Lett. 2019, 7, 117. doi: 10.1080/21663831.2018.1561535  doi: 10.1080/21663831.2018.1561535

    44. [44]

      Park, M. H.; Lee, Y. H.; Hwang, C. S. Nanoscale 2019, 11, 19477. doi: 10.1039/C9NR05768D  doi: 10.1039/C9NR05768D

    45. [45]

      Zhang, X. Y.; Hsu, C. H.; Lien, S. Y.; Wu, W. Y.; Ou, S. L.; Chen, S. Y.; Huang, W.; Zhu, W. Z.; Xiong, F. B.; Zhang, S. Nanoscale Res. Lett. 2019, 14, 83. doi: 10.1186/s11671-019-2915-0  doi: 10.1186/s11671-019-2915-0

    46. [46]

      Liu, F. M.; Liu, T. Y.; Liu, J.; Li, H. X. Acta Phys. -Chim. Sin. 2015, 31, 441.  doi: 10.3866/PKU.WHXB201412301

    47. [47]

      Kim, K. D.; Park, M. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Lee, Y. H.; Hyun, S. D.; Gwon, T.; Hwang, C. S. J. Mater. Chem. C 2016, 4. doi: 10.1039/c6tc02003h  doi: 10.1039/c6tc02003h

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    10. [10]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    17. [17]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    20. [20]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

Metrics
  • PDF Downloads(50)
  • Abstract views(1528)
  • HTML views(319)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return