Citation: Su Yuefeng, Zhang Qiyu, Chen Lai, Bao Liying, Lu Yun, Chen Shi, Wu Feng. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 200506. doi: 10.3866/PKU.WHXB202005062 shu

Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities

  • Corresponding author: Chen Lai, chenlai144@sina.com Wu Feng, wufeng863@vip.sina.com
  • Received Date: 25 May 2020
    Revised Date: 2 June 2020
    Accepted Date: 8 June 2020
    Available Online: 12 June 2020

    Fund Project: the National Natural Science Foundation of China U1664255the National Natural Science Foundation of China 21875022The project was supported by the National Key R&D Program of China (2016YFB0100301), the National Natural Science Foundation of China (21875022, 51802020, U1664255), the Science and Technology Innovation Foundation of Beijing Institute of Technology Chongqing Innovation Center, China (2020CX5100006), the Beijing Institute of Technology Research Fund Program for Young Scholars, and the Young Elite Scientists Sponsorship Program by CAST, China (2018QNRC001)the National Natural Science Foundation of China 51802020the Science and Technology Innovation Foundation of Beijing Institute of Technology Chongqing Innovation Center, China 2020CX5100006the National Key R&D Program of China 2016YFB0100301the Beijing Institute of Technology Research Fund Program for Young Scholars, and the Young Elite Scientists Sponsorship Program by CAST, China 2018QNRC001

  • With the development of electric vehicles (EVs) and hybrid electric vehicles (HEVs), the demand for lithium ion power batteries with high energy density and long cycle life has continuously increased in the recent years. According to the "Made in China 2025" plan, the energy densities of lithium ion batteries need to reach 300 Wh·kg-1 in 2020. Due to their high discharge capacities and work voltages, Ni-rich layered materials have attracted considerable attention from the science and industry fields as one of the most promising cathodes to achieve high energy density. According to previous reports, the discharge capacities of Ni-rich cathodes were positively correlated to their Ni content. However, the increased Ni content can aggravate the side reactions between the cathode and electrolyte, induce O loss, and trigger structural transformation from the surface to bulk. In this study, ZrO2 was coated on LiNi0.8Co0.1Mn0.1O2 with a simple wet chemical method to improve its cycle performance. The scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) demonstrated that Zr was only detected in the ZrO2-coated samples and was mainly distributed at the surface of the secondary particles of the LiNi0.8Co0.1Mn0.1O2 cathodes. The X-ray diffraction (XRD) indicated that Zr4+ in ZrO2 migrated into the layered surface structure of LiNi0.8Co0.1Mn0.1O2 based on the shift of the (003) peak to a lower angle, which was considered as a lattice expansion along the c axis. Under the cut-off voltage of 4.3 and 4.5 V, the capacity retentions of the LiNi0.8Co0.1Mn0.1O2 cathodes improved from 84.89 to 97.61% and 75.60 to 81.37%, respectively, after 100 cycles at 1C. This was mainly attributed to the doped Zr4+ in surface structure as opposed to the ZrO2 coating. The X-ray photoelectron spectroscopy (XPS) indicated that the Ni3+ at the surface of LiNi0.8Co0.1Mn0.1O2 was reduced to Ni2+ after the Zr4+ surface doping due to charge balance. Rietveld refinement also indicated that the Li+/Ni2+ cation disordering improved after the Zr4+ in ZrO2 doped into NCM surface structure. The raised cation disordering may be triggered by the increased content of Ni2+ and their migration into Li layers due to the similar ion radius of Li+ (0.076 nm) and Ni2+ (0.069 nm). A structure-reconstructed layer at the surface of LiNi0.8Co0.1Mn0.1O2 was formed after the Zr4+ doping, which had been confirmed by transmission electron microscope (TEM). It was determined that this structure-reconstructed layer can hinder the side reactions at the interface and stabilize the bulk structure during cycles; thus, the cycle stability of LiNi0.8Co0.1Mn0.1O2 material was improved.
  • 加载中
    1. [1]

      Chen, Z.; Qin, Y.; Amine, K.; Sun, Y. K. J. Mater. Chem. 2010, 20, 7606. doi: 10.1039/c0jm00154f  doi: 10.1039/c0jm00154f

    2. [2]

      Kim, H. R.; Woo, S. G.; Kim, J. H.; Cho, W.; Kim, Y. J. J. Electroanal. Chem. 2016, 782, 168. doi: 10.1016/j.jelechem.2016.10.032  doi: 10.1016/j.jelechem.2016.10.032

    3. [3]

      Li, W.; Song, B.; Manthiram, A. Chem. Soc. Rev. 2017, 46, 3006. doi: 10.1039/c6cs00875e  doi: 10.1039/c6cs00875e

    4. [4]

      Wang, Z.; Wu, F.; Su, Y.; Bao, L.; Chen, L.; Li, N.; Chen, S. Acta Phys. -Chim. Sin. 2012, 28, 823.  doi: 10.3866/PKU.WHXB201202102

    5. [5]

      Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Ed. 2015, 54, 4440. doi: 10.1002/anie.201409262  doi: 10.1002/anie.201409262

    6. [6]

      Chen, L.; Su, Y.; Chen, S.; Li, N.; Bao, L.; Li, W.; Wang, Z.; Wang, M.; Wu, F. Adv. Mater. 2014, 26, 6756. doi: 10.1002/adma.201402541  doi: 10.1002/adma.201402541

    7. [7]

      Chen, L.; Chen, S.; Hu, D.; Su, Y.; Li, W.; Wang, Z.; Bao, L.; Wu, F. Acta Phys. -Chim. Sin. 2014, 30, 467.  doi: 10.3866/PKU.WHXB201312252

    8. [8]

      Ando, K.; Yamada, Y.; Nishikawa, K.; Matsuda, T.; Imamura, D.; Kanamura, K. ACS Appl. Energy Mater. 2018, 1, 4536. doi: 10.1021/acsaem.8b00612  doi: 10.1021/acsaem.8b00612

    9. [9]

      Manthiram, A.; Song, B.; Li, W. Energy Storage Mater. 2017, 6, 125. doi: 10.1016/j.ensm.2016.10.007  doi: 10.1016/j.ensm.2016.10.007

    10. [10]

      Myung, S. T.; Amine, K.; Sun, Y. K. J. Mater. Chem. 2010, 20, 7074. doi: 10.1039/c0jm00508h  doi: 10.1039/c0jm00508h

    11. [11]

      Kou, J.; Wang, Z.; Bao, L.; Su, Y.; Hu, Y.; Chen, L.; Xu, S.; Chen, F.; Chen, R.; Sun, F.; Wu, F. Acta Phys. -Chim. Sin. 2016, 32, 717.  doi: 10.3866/PKU.WHXB201512301

    12. [12]

      Cho, W.; Myeong, S.; Kim, N.; Lee, S.; Kim, Y.; Kim, M.; Kang, S. J.; Park, N.; Oh, P.; Cho, J. Adv. Mater. 2017, 29, 1605578. doi: 10.1002/adma.201605578  doi: 10.1002/adma.201605578

    13. [13]

      Li, L.; Xu, M.; Yao, Q.; Chen, Z.; Song, L.; Zhang, Z.; Gao, C.; Wang, P.; Yu, Z.; Lai, Y. ACS Appl. Mater. Interfaces 2016, 8, 30879. doi: 10.1021/acsami.6b09197  doi: 10.1021/acsami.6b09197

    14. [14]

      Schipper, F.; Bouzaglo, H.; Dixit, M.; Erickson, E. M.; Weigel, T.; Talianker, M.; Grinblat, J.; Burstein, L.; Schmidt, M.; Lampert, J.; Erk, C.; Markovsky, B.; Major, D. T.; Aurbach, D. Adv. Energy Mater. 2018, 8, 1701682. doi: 10.1002/aenm.201701682  doi: 10.1002/aenm.201701682

    15. [15]

      Wu, N.; Wu, H.; Kim, J. K.; Liu, X.; Zhang, Y. ChemElectroChem 2018, 5, 78. doi: 10.1002/celc.201700979  doi: 10.1002/celc.201700979

    16. [16]

      Zheng, J.; Zheng, J. X.; Liu, T. C.; Hu, Z. X.; Wei, Y.; Song, X. H.; Ren, Y.; Wang, W. D.; Rao, M. M.; Lin, Y.; et al. J. Am. Chem. Soc. 2016, 138, 13326. doi: 10.1021/jacs.6b07771  doi: 10.1021/jacs.6b07771

    17. [17]

      Zheng, J.; Ye, Y.; Liu, T.; Xiao, Y.; Wang, C.; Wang, F.; Pan, F. Acc. Chem. Res. 2019, 52, 2201. doi: 10.1021/acs.accounts.9b00033  doi: 10.1021/acs.accounts.9b00033

    18. [18]

      Lu, H. Q.; Wu, F.; Su, Y. F.; Li, N.; Chen, S.; Bao, L. Y. Acta Phys. -Chim. Sin. 2010, 26, 51.  doi: 10.3866/PKU.WHXB20100112

    19. [19]

      Dixit, M.; Markovsky, B.; Schipper, F.; Aurbach, D.; Major, D. T. J. Phys. Chem. C 2017, 121, 22628. doi: 10.1021/acs.jpcc.7b06122  doi: 10.1021/acs.jpcc.7b06122

    20. [20]

      Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A. J. Electrochem. Soc. 2017, 164, A1361. doi: 10.1149/2.0021707jes  doi: 10.1149/2.0021707jes

    21. [21]

      Evertz, M.; Horsthemke, F.; Kasnatscheew, J.; Börner, M.; Winter, M.; Nowak, S. J. Power Sources 2016, 329, 364. doi: 10.1016/j.jpowsour.2016.08.099  doi: 10.1016/j.jpowsour.2016.08.099

    22. [22]

      Zheng, J.; Xiao, J.; Zhang, J. G. Nano Today 2016, 11, 678. doi: 10.1016/j.nantod.2016.08.011  doi: 10.1016/j.nantod.2016.08.011

    23. [23]

      Sun, H. H.; Manthiram, A. Chem. Mater. 2017, 29, 8486. doi: 10.1021/acs.chemmater.7b03268  doi: 10.1021/acs.chemmater.7b03268

    24. [24]

      Zhang, Q.; Su, Y.; Chen, L.; Lu, Y.; Bao, L.; He, T.; Wang, J.; Chen, R.; Tan, J.; Wu, F. J. Power Sources 2018, 396, 734. doi: 10.1016/j.jpowsour.2018.06.091  doi: 10.1016/j.jpowsour.2018.06.091

    25. [25]

      Chen, S.; He, T.; Su, Y.; Lu, Y.; Bao, L.; Chen, L.; Zhang, Q.; Wang, J.; Chen, R.; Wu, F. ACS Appl. Mater. Interfaces 2017, 9, 29732. doi: 10.1021/acsami.7b08006  doi: 10.1021/acsami.7b08006

    26. [26]

      Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. Nano Res. 2014, 8, 1464. doi: 10.1007/s12274-014-0631-8  doi: 10.1007/s12274-014-0631-8

    27. [27]

      Meng, K.; Wang, Z.; Guo, H.; Li, X.; Wang, D. Electrochim. Acta 2016, 211, 822. doi: 10.1016/j.electacta.2016.06.110  doi: 10.1016/j.electacta.2016.06.110

    28. [28]

      Zhao, E.; Chen, M.; Hu, Z.; Chen, D.; Yang, L.; Xiao, X. J. Power Sources 2017, 343, 345. doi: 10.1016/j.jpowsour.2017.01.066  doi: 10.1016/j.jpowsour.2017.01.066

    29. [29]

      Wang, M.; Wu, F.; Su, Y. F.; Chen, S. Acta Phys. -Chim. Sin. 2008, 24, 1175.  doi: 10.3866/PKU.WHXB20080710

    30. [30]

      Wu, F.; Wang, M.; Su, Y. F.; Chen, S. Acta Phys. -Chim. Sin. 2009, 25, 629.  doi: 10.3866/PKU.WHXB20090411

    31. [31]

      Mudit, D.; Boris, M.; Doron, A.; Dan, T. M. J. Electrochem. Soc. 2017, 164, A6359. doi: 10.1149/2.0561701jes  doi: 10.1149/2.0561701jes

    32. [32]

      Woo, S. W.; Myung, S. T.; Bang, H.; Kim, D. W.; Sun, Y. K. Electrochim. Acta 2009, 54, 3851. doi: 10.1016/j.electacta.2009.01.048  doi: 10.1016/j.electacta.2009.01.048

    33. [33]

      Wu, F.; Liu, N.; Chen, L.; Su, Y.; Tan, G.; Bao, L.; Zhang, Q.; Lu, Y.; Wang, J.; Chen, S.; Tan, J. Nano Energy 2019, 59, 50. doi: 10.1016/j.nanoen.2019.02.027  doi: 10.1016/j.nanoen.2019.02.027

    34. [34]

      Xia, L.; Qiu, K.; Gao, Y.; He, X.; Zhou, F. J. Mater. Sci. Technol. 2015, 50, 2914. doi: 10.1007/s10853-015-8856-9  doi: 10.1007/s10853-015-8856-9

    35. [35]

      Yang, Z.; Guo, X.; Xiang, W.; Hua, W.; Zhang, J.; He, F.; Wang, K.; Xiao, Y.; Zhong, B. J. Alloys Compd. 2017, 699, 358. doi: 10.1016/j.jallcom.2016.11.245  doi: 10.1016/j.jallcom.2016.11.245

    36. [36]

      Xu, X.; Jian, J.; Xiang, L.; Wang, L.; He, X.; Yin, G.; Du, C. Electrochim. Acta 2019, 317, 459. doi: 10.1016/j.electacta.2019.06.016  doi: 10.1016/j.electacta.2019.06.016

    37. [37]

      Liu, D.; Liu, S.; Zhang, C.; You, L.; Huang, T.; Yu, A. ACS Sustain. Chem. Eng. 2019, 7, 10661. doi: 10.1021/acssuschemeng.9b01312  doi: 10.1021/acssuschemeng.9b01312

    38. [38]

      Cho, Y.; Oh, P.; Cho, J. Nano Lett. 2013, 13, 1145. doi: 10.1021/nl304558t  doi: 10.1021/nl304558t

    39. [39]

      Kim, J.; Cho, H.; Jeong, H. Y.; Ma, H.; Lee, J.; Hwang, J.; Park, M.; Cho, J. Adv. Energy Mater. 2017, 7, 1602559. doi: 10.1002/aenm.201602559  doi: 10.1002/aenm.201602559

    40. [40]

      Kim, J.; Ma, H.; Cha, H.; Lee, H.; Sung, J.; Seo, M.; Oh, P.; Park, M.; Cho, J. Energy Environ. Sci. 2018, 11, 1449. doi: 10.1039/c8ee00155c  doi: 10.1039/c8ee00155c

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(23)
  • Abstract views(1365)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return