Citation: Shan Yizhu, Feng Hongqing, Li Zhou. Electrical Stimulation for Nervous System Injury: Research Progress and Prospects[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 200503. doi: 10.3866/PKU.WHXB202005038 shu

Electrical Stimulation for Nervous System Injury: Research Progress and Prospects



  • Author Bio:
    Dr. Hongqing Feng received her Doctor's Degree in Peking University, Beijing. She is currently working as an associate professor at Beijing Institute of Nanoenergy and Nanosystems, CAS. Her research interest includes anti-bacterial technologies and the biomedical applications of nanogenerators
    Prof. Zhou Li received his Ph.D. from Peking University in Department of Biomedical Engineering in 2010. Currently, he is a Professor in Beijing Istitute of Nanoenergy and Nanosystems, CAS. His reaserch interests include nanogenerators, in vivo energy harvesters and self-powered medical devices, biosensors
  • Corresponding author: Feng Hongqing, fenghongqing@binn.cas.cn Li Zhou, zli@binn.cas.cn
  • Received Date: 14 May 2020
    Revised Date: 10 June 2020
    Accepted Date: 10 June 2020
    Available Online: 15 June 2020

    Fund Project: the National Natural Science Foundation of China 81971770The project was supported by the National Natural Science Foundation of China (81971770, 61875015), the University of Chinese Academy of Sciences, and the National Youth Talent Support Programthe National Natural Science Foundation of China 61875015

  • Nervous system injury can disrupt communications between neurons, leading to loss of basic nerve functions and even paralysis. The clinical prognosis of nervous system injury is usually poor. This adversely affects the physical and mental health of patients and their families, and causes serious economic losses to the society. Due to slow and incomplete healing, the regenerative capacity of the nervous system is limited. Despite development of various biomedical treatment options such as, stem cell transplantation, neurotrophic factors and scaffold application, it is still very difficult to achieve adequate therapeutic effects that can benefit clinical practice. It is worth noting that nervous system components are closely related to electric fields (EFs), and a fundamental property of neurons is plasticity in response to endogenous and exogenous electrical stimulations. Electrical stimulation has been applied by researchers to induce nerve repair. This review summarizes the progress in research on EFs on neurons and applications of EFs in the treatment of peripheral nerve system and central nerve system injuries, focusing on the methods and effects of electrical stimulation. Research using direct, alternating, and pulsed EFs, with various parameters, has all demonstrated its positive effects on nerve healing and motor function recovery. Research on nanogenerators (NGs), a novel electrical stimulation technology that can convert mechanical energy into electrical energy, has achieved great progress in recent years. In biomedicine, NGs can collect the mechanical energy of human motion and convert it into electrical stimulations without requiring an external power supply, which can lead to significant innovations in electrical stimulation therapy. This review also discusses the recent applications of NGs in the treatment of nervous system diseases. NGs can be used to fabricate miniature, ultra-thin, flexible, and biodegradable healthcare devices according to different application scenarios such as in vivo or in vitro. NGs have enabled specific applications in deep brain stimulation, peripheral nerve stimulation, muscle stimulation, and sensory substitution to restore nervous system function. In order to apply electrical stimulation therapy in the clinical setting and improve the quality of life of patients with neurological injuries, further research into stimulation devices and their settings and parameters is highly desirable.
  • 加载中
    1. [1]

      Courtine, G.; Sofroniew, M. V. Nat. Med. 2019, 25, 898. doi: 10.1038/s41591-019-0475-6  doi: 10.1038/s41591-019-0475-6

    2. [2]

      Haan, N.; Song, B. Adv. Wound Care (New Rochelle) 2014, 3, 156. doi: 10.1089/wound.2013.0450  doi: 10.1089/wound.2013.0450

    3. [3]

      Bradbury, E. J.; Khemani, S.; Von, R.; King; Priestley, J. V.; McMahon, S. B. Eur. J. Neurosci. 1999, 11, 3873. doi: 10.1046/j.1460-9568.1999.00809.x  doi: 10.1046/j.1460-9568.1999.00809.x

    4. [4]

      Bregman, B. S.; Kunkel-Bagden, E.; Schnell, L.; Dai, H. N.; Gao, D.; Schwab, M. E. Nature 1995, 378, 498. doi: 10.1038/378498a0  doi: 10.1038/378498a0

    5. [5]

      Bradbury, E. J.; Moon, L. D.; Popat, R. J.; King, V. R.; Bennett, G. S.; Patel, P. N.; Fawcett, J. W.; McMahon, S. B. Nature 2002, 416, 636. doi: 10.1038/416636a  doi: 10.1038/416636a

    6. [6]

      Lu, P.; Jones, L. L.; Snyder, E. Y.; Tuszynski, M. H. Exp. Neurol. 2003, 181, 115. doi: 10.1016/s0014-4886(03)00037-2  doi: 10.1016/s0014-4886(03)00037-2

    7. [7]

      Borgens, R. B.; Jaffe, L. F.; Cohen, M. J. Proc. Natl. Acad. Sci. 1980, 77, 4390. doi: 10.1073/pnas.77.7.4390-c  doi: 10.1073/pnas.77.7.4390-c

    8. [8]

      Jenkins, L. S.; Duerstock, B. S.; Borgens, R. B. Dev. Biol. 1996, 178, 251. doi: 10.1006/dbio.1996.0216  doi: 10.1006/dbio.1996.0216

    9. [9]

      Gaudet, A. D.; Popovich, P. G.; Ramer, M. S. J. Neuroinflammation 2011, 8, 110. doi: 10.1186/1742-2094-8-110  doi: 10.1186/1742-2094-8-110

    10. [10]

      Webber, C. A.; Christie, K. J.; Cheng, C.; Martinez, J. A.; Singh, B.; Singh, V.; Thomas, D.; Zochodne, D. W. Glia 2011, 59, 1503. doi: 10.1002/glia.21194  doi: 10.1002/glia.21194

    11. [11]

      Marsh, G.; Beams, H. W. J. Cell Comp. Physiol. 1946, 27, 139. doi: 10.1002/jcp.1030270303  doi: 10.1002/jcp.1030270303

    12. [12]

      Jaffe, L. F.; Poo, M. M. J. Exp. Zool. 1979, 209, 115. doi: 10.1002/jez.1402090114  doi: 10.1002/jez.1402090114

    13. [13]

      Patel, N.; Poo, M. M. J. Neurosci. 1982, 2, 483. doi: 10.1523/jneurosci.02-04-00483.1982  doi: 10.1523/jneurosci.02-04-00483.1982

    14. [14]

      Hinkle, L.; McCaig, C. D.; Robinson, K. R. J. Physiol. 1981, 314, 121. doi: 10.1113/jphysiol.1981.sp013695  doi: 10.1113/jphysiol.1981.sp013695

    15. [15]

      Al-Majed, A. A.; Neumann, C. M.; Brushart, T. M.; Gordon, T. Eur. J. Neurosci. 2000, 12, 4381. doi: 10.1523/jneurosci.20-07-02602.2000  doi: 10.1523/jneurosci.20-07-02602.2000

    16. [16]

      Al-Majed, A. A.; Tam, S. L.; Gordon, T. J. C. Cell. Mol. Neurobiol. 2004, 24, 379. doi: 10.1023/b:cemn.0000022770.66463.f7  doi: 10.1023/b:cemn.0000022770.66463.f7

    17. [17]

      Brushart, T. M.; Hoffman, P. N.; Royall, R. M.; Murinson, B. B.; Witzel, C.; Gordon, T. J. Neurosci. 2002, 22 (15), 6631. doi: 10.1523/jneurosci.22-15-06631.2002  doi: 10.1523/jneurosci.22-15-06631.2002

    18. [18]

      Huang, J.; Hu, X.; Lu, L.; Ye, Z.; Wang, Y.; Luo, Z. J. Neurotrauma 2009, 26, 1805. doi: 10.1089/neu.2008-0732  doi: 10.1089/neu.2008-0732

    19. [19]

      Mendonça, A. C.; Barbieri, C. H.; Mazzer, N. J. Neurosci. Methods 2003, 129, 183. doi: 10.1016/s0165-0270(03)00207-3  doi: 10.1016/s0165-0270(03)00207-3

    20. [20]

      Huang, J.; Zhang, Y.; Lu, L.; Hu, X.; Luo, Z. Eur. J. Neurosci. 2013, 38, 3691. doi: 10.1111/ejn.12370  doi: 10.1111/ejn.12370

    21. [21]

      Huang, J.; Lu, L.; Zhang, J.; Hu, X.; Zhang, Y.; Liang, W.; Wu, S.; Luo, Z. J. P. O. PLoS One 2012, 7. doi: 10.1371/journal.pone.0039526  doi: 10.1371/journal.pone.0039526

    22. [22]

      Ahlborn, P.; Schachner, M.; Irintchev, A. Exp. Neurol. 2007, 208, 137. doi: 10.1016/j.expneurol.2007.08.005  doi: 10.1016/j.expneurol.2007.08.005

    23. [23]

      Gordon, T.; Amirjani, N.; Edwards, D. C.; Chan, K. M. Exp. Neurol. 2010, 223, 192. doi: 10.1016/j.expneurol.2009.09.020  doi: 10.1016/j.expneurol.2009.09.020

    24. [24]

      Wong, J. N.; Olson, J. L.; Morhart, M. J.; Chan, K. M. Ann. Neurol. 2015, 77, 996. doi: 10.1002/ana.24397  doi: 10.1002/ana.24397

    25. [25]

      Singh, B.; Xu, Q. G.; Franz, C. K.; Zhang, R.; Dalton, C.; Gordon, T.; Verge, V. M.; Midha, R.; Zochodne, D. W. J. Neurosurg. 2012, 116, 498. doi: 10.3171/2011.10.JNS11612  doi: 10.3171/2011.10.JNS11612

    26. [26]

      Nix, W. A.; Hopf, H. C. Brain research 1983, 272, 21. doi: 10.1016/0006-8993(83)90360-8  doi: 10.1016/0006-8993(83)90360-8

    27. [27]

      Gordon, T.; Chan, K. M.; Sulaiman, O. A.; Udina, E.; Amirjani, N.; Brushart, T. M. J. N. Neurosurgery 2009, 65, A132. doi: 10.1227/01.neu.0000335650.09473.d3  doi: 10.1227/01.neu.0000335650.09473.d3

    28. [28]

      Eberhardt, K. A.; Irintchev, A.; Al-Majed, A. A.; Simova, O.; Brushart, T. M.; Gordon, T.; Schachner, M. Exp. Neurol. 2006, 198, 500. doi: 10.1016/j.expneurol.2005.12.018  doi: 10.1016/j.expneurol.2005.12.018

    29. [29]

      Udina, E.; Furey, M.; Busch, S.; Silver, J.; Gordon, T.; Fouad, K. Exp. Neurol. 2008, 210, 238. doi: 10.1016/j.expneurol.2007.11.007  doi: 10.1016/j.expneurol.2007.11.007

    30. [30]

      Aglah, C.; Gordon, T.; De Chaves, E. P. J. N. Neuropharmacology 2008, 55, 8. doi: 10.1016/j.neuropharm.2008.04.005  doi: 10.1016/j.neuropharm.2008.04.005

    31. [31]

      Huang, J.; Ye, Z.; Hu, X.; Lu, L.; Luo, Z. J. G. Glia 2010, 58, 622. doi: 10.1002/glia.20951  doi: 10.1002/glia.20951

    32. [32]

      Koppes, A.; Zaccor, N.; Rivet, C.; Williams, L.; Piselli, J.; Gilbert, R.; Thompson, D. M. J. Neural. Eng. 2014, 11, 046002. doi: 10.1088/1741-2560/11/4/046002  doi: 10.1088/1741-2560/11/4/046002

    33. [33]

      Borgens, R. B.; Roederer, E.; Cohen, M. J. J. S. Science 1981, 213, 611. doi: 10.1126/science.7256258  doi: 10.1126/science.7256258

    34. [34]

      Borgens, R. B.; Blight, A. R.; McGinnis, M. J. S. Science 1987, 238, 366. doi: 10.1126/science.3659920  doi: 10.1126/science.3659920

    35. [35]

      Borgens, R. B.; Blight, A. R.; McGinnis, M. E. J. Comp. Neurol. 1990, 296, 634. doi: 10.1002/cne.902960409  doi: 10.1002/cne.902960409

    36. [36]

      Fehlings, M. G.; Tator, C. H. Brain Res. 1992, 579, 32. doi: 10.1016/0006-8993(92)90738-u  doi: 10.1016/0006-8993(92)90738-u

    37. [37]

      Borgens, R. B.; Toombs, J. P.; Blight, A. R.; McGinnis, M. E.; Bauer, M. S.; Widmer, W. R.; Cook Jr., J. R. Restor. Neurol. Neurosci. 1993, 5, 305. doi: 10.3233/RNN-1993-55601  doi: 10.3233/RNN-1993-55601

    38. [38]

      Shapiro, S.; Borgens, R.; Pascuzzi, R.; Roos, K.; Groff, M.; Purvines, S.; Rodgers, R. B.; Hagy, S.; Nelson, P. J. Neurosurg. 2005, 2, 3. doi: 10.3171/spi.2005.2.1.0003  doi: 10.3171/spi.2005.2.1.0003

    39. [39]

      Gerasimenko, Y. P.; Ichiyama, R. M.; Lavrov, I. A.; Courtine, G.; Cai, L.; Zhong, H.; Roy, R. R.; Edgerton, V. R. J. Neurophysiol. 2007, 98, 2525. doi: 10.1152/jn.00836.2007  doi: 10.1152/jn.00836.2007

    40. [40]

      Courtine, G.; Gerasimenko, Y.; van den Brand, R.; Yew, A.; Musienko, P.; Zhong, H.; Song, B. B.; Ao, Y.; Ichiyama, R. M.; Lavrov, I.; et al. Nat. Neurosci. 2009, 12, 1333. doi: 10.1038/nn.2401  doi: 10.1038/nn.2401

    41. [41]

      Wenger, N.; Moraud, E. M.; Raspopovic, S.; Bonizzato, M.; DiGiovanna, J.; Musienko, P.; Morari, M.; Micera, S.; Courtine, G. J. Sci. Transl. Med. 2014, 6, 255ra133. doi: 10.1126/scitranslmed.3008325  doi: 10.1126/scitranslmed.3008325

    42. [42]

      Wenger, N.; Moraud, E. M.; Gandar, J.; Musienko, P.; Capogrosso, M.; Baud, L.; Le Goff, C. G.; Barraud, Q.; Pavlova, N.; Dominici, N.; et al. Nat. Med. 2016, 22, 138. doi: 10.1038/nm.4025  doi: 10.1038/nm.4025

    43. [43]

      Minev, I. R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E. M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L.; et al. Science 2015, 347 (6218), 159. doi: 10.1126/science.1260318  doi: 10.1126/science.1260318

    44. [44]

      Angeli, C. A.; Boakye, M.; Morton, R. A.; Vogt, J.; Benton, K.; Chen, Y.; Ferreira, C. K.; Harkema, S. J. N. Engl. J. Med. 2018, 379, 1244. doi: 10.1056/NEJMoa1803588  doi: 10.1056/NEJMoa1803588

    45. [45]

      Gill, M. L.; Grahn, P.; Calvert, J. S.; Linde, M. B.; Lavrov, I. A.; Strommen, J. A.; Beck, L. A.; Sayenko, D. G.; Van Straaten, M. G; Drubach, D. I.; et al. Nat. Med. 2018, 24, 1677. doi: 10.1038/s41591-018-0175-7  doi: 10.1038/s41591-018-0175-7

    46. [46]

      Wang, Z. L.; Song, J. Science 2006, 312, 242. doi: 10.1126/science.1124005  doi: 10.1126/science.1124005

    47. [47]

      Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Nano Energy 2012, 1, 328. doi: 10.1016/j.nanoen.2012.01.004  doi: 10.1016/j.nanoen.2012.01.004

    48. [48]

      Ouyang, H.; Tian, J. J.; Sun, G. L.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L. M.; Shi, B. J.; Fan, Y. B.; Fan, Y. F.; et al. Adv. Mater. 2017, 29. doi: 10.1002/adma.201703456  doi: 10.1002/adma.201703456

    49. [49]

      Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K. S.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H. J.; et al. Adv. Mater. 2014, 26, 3918. doi: 10.1002/adma.201400172  doi: 10.1002/adma.201400172

    50. [50]

      Zi, Y.; Lin, L.; Wang, J.; Wang, S.; Chen, J.; Fan, X.; Yang, P. K.; Yi, F.; Wang, Z. L. Adv. Mater. 2015, 27, 2340. doi: 10.1002/adma.201500121  doi: 10.1002/adma.201500121

    51. [51]

      Hu, W. T.; Wei, X. L.; Zhu, L.; Yin, D.; Wei, A. M.; Bi, X. Y.; Liu, T.; Zhou, G. M.; Qiang, Y. H.; Sun, X. H. Nano Energy 2019, 57, 600. doi: 10.1016/j.nanoen.2018.12.077  doi: 10.1016/j.nanoen.2018.12.077

    52. [52]

      He, C.; Zhu, W.; Chen, B.; Xu, L.; Jiang, T.; Han, C. B.; Gu, G. Q.; Li, D.; Wang, Z. L. ACS Appl. Mater. Interfaces 2017, 9, 26126. doi: 10.1021/acsami.7b08526  doi: 10.1021/acsami.7b08526

    53. [53]

      Zheng, Q.; Shi, B.; Fan, F.; Wang, X.; Yan, L.; Yuan, W.; Wang, S.; Liu, H.; Li, Z.; Wang, Z. L. Adv. Mater. 2014, 26, 5851. doi: 10.1002/adma.201402064  doi: 10.1002/adma.201402064

    54. [54]

      Zheng, Q.; Zhang, H.; Shi, B. J.; Xue, X, ; Liu, Z.; Jin, Y. M.; Ma, Y.; Zou, Y.; Wang, X. X.; An, Z.; et al. ACS Nano 2016, 10, 6510. doi: 10.1021/acsnano.6b02693  doi: 10.1021/acsnano.6b02693

    55. [55]

      Guo, W.; Zhang, X.; Yu, X.; Wang, S.; Qiu, J.; Tang, W.; Li, L.; Liu, H.; Wang, Z. L. ACS Nano 2016, 10, 5086. doi: 10.1021/acsnano.6b00200  doi: 10.1021/acsnano.6b00200

    56. [56]

      Tang, W.; Tian, J.; Zheng, Q.; Yan, L.; Wang, J.; Li, Z.; Wang, Z. L. ACS Nano 2015, 9, 7867. doi: 10.1021/acsnano.5b03567  doi: 10.1021/acsnano.5b03567

    57. [57]

      Zheng, Q.; Zou, Y.; Zhang, Y.; Liu, Z.; Shi, B.; Wang, X.; Jin, Y.; Ouyang, H.; Li, Z.; Wang, Z. L. Sci. Adv. 2016, 2, e1501478. doi: 10.1126/sciadv.1501478  doi: 10.1126/sciadv.1501478

    58. [58]

      Mayberg, H. S.; Lozano, A. M.; Voon, V.; McNeely, H. E.; Seminowicz, D.; Hamani, C.; Schwalb, J. M.; Kennedy, S. H. Neuron 2005, 45, 651. doi: 10.1016/j.neuron.2005.02.014  doi: 10.1016/j.neuron.2005.02.014

    59. [59]

      Hwang, G. T.; Kim, Y.; Lee, J. H.; Oh, S.; Jeong, C. K.; Park, D. Y.; Ryu, J.; Kwon, H.; Lee, S. G.; Joung, B.; et al. Energy Environ. Sci. 2015, 8, 2677. doi: 10.1039/c5ee01593f  doi: 10.1039/c5ee01593f

    60. [60]

      Lee, S.; Wang, H.; Shi, Q.; Dhakar, L.; Wang, J.; Thakor, N. V.; Yen, S. C.; Lee, C. Nano Energy 2017, 33, 1. doi: 10.1016/j.nanoen.2016.12.038  doi: 10.1016/j.nanoen.2016.12.038

    61. [61]

      Lee, S.; Wang, H.; Wang, J.; Shi, Q.; Yen, S. C.; Thakor, N. V.; Lee, C. Nano Energy 2018, 50, 148. doi: 10.1016/j.nanoen.2018.04.004  doi: 10.1016/j.nanoen.2018.04.004

    62. [62]

      Wang, H.; Wang, J.; He, T.; Li, Z.; Lee, C. Nano Energy 2019, 63. doi: 10.1016/j.nanoen.2019.06.040  doi: 10.1016/j.nanoen.2019.06.040

    63. [63]

      Beker, L.; Zorlu, O.; Goksu, N.; Kulah, H. In Transducers & Eurosensors XXVII, The 17th International Conference on Solid-State Sensors, Barcelona, Spain, June 16-20, 2013; IEEE: Piscataway, 2013; pp. 1663-1666.

    64. [64]

      Chen, T.; Shi, Q.; Zhu, M.; He, T.; Sun, L.; Yang, L.; Lee, C. ACS Nano 2018, 12, 11561. doi:10.1021/acsnano.8b06747

    65. [65]

      Yao, G.; Xu, L.; Cheng, X.; Li, Y.; Huang, X.; Guo, W.; Liu, S.; Wang, Z. L.; Wu, H. Adv. Funct. Mater. 2020, 30, 1907312. doi: 10.1002/adfm.201907312  doi: 10.1002/adfm.201907312

    66. [66]

      Chen, S.; Pang, Y.; Yuan, H.; Tan, X.; Cao, C. Adv. Mater. Technol. 2020, 1901075. doi:10.1002/admt.201901075  doi: 10.1002/admt.201901075

    67. [67]

      Shi, J.; Fang, Y. Adv. Mater. 2019, 31, e1804895. doi: 10.1002/adma.201804895  doi: 10.1002/adma.201804895

    68. [68]

      Lacour, S. P.; Courtine, G.; Guck, J. Nat. Rev. Mater. 2016, 1. doi: 10.1038/natrevmats.2016.63  doi: 10.1038/natrevmats.2016.63

    69. [69]

      Xu, K; Wang, J. F. Acta Phys. -Chim. Sin. 2020, 36 (12), 2003050.  doi: 10.3866/PKU.WHXB202003050

    70. [70]

      Guan, S.; Wang, J.; Gu, X.; Zhao, Y.; Hou, R.; Fan, H.; Zou, L.; Gao, L.; Du, M.; Li, C.; Fang, Y. Sci. Adv. 2019, 5, eaav2842. doi: 10.1126/sciadv.aav2842  doi: 10.1126/sciadv.aav2842

    71. [71]

      Zhang, J.; Liu, X. J.; Xu, W. J.; Luo, W. H.; Li, M.; Chu, F. B.; Xu, L.; Cao, A. Y.; Guan, J. S.; Tang, S. M.; Duan, X. J. Nano Lett. 2018, 18, 2903. doi: 10.1021/acs.nanolett.8b00087  doi: 10.1021/acs.nanolett.8b00087

  • 加载中
    1. [1]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    2. [2]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    3. [3]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    4. [4]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    5. [5]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    6. [6]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    7. [7]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    8. [8]

      Hongjie GuoQiang WeiYangyang WuWei QiuHongliang LiChangyong Zhang . Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization. Chinese Chemical Letters, 2024, 35(8): 109325-. doi: 10.1016/j.cclet.2023.109325

    9. [9]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    10. [10]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    11. [11]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    12. [12]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    13. [13]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    14. [14]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    15. [15]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    16. [16]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    17. [17]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    18. [18]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    19. [19]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    20. [20]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

Metrics
  • PDF Downloads(7)
  • Abstract views(914)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return