Citation: Huang Jiangtao, Zhou Jiang, Liang Shuquan. Guest Pre-Intercalation Strategy to Boost the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 200502. doi: 10.3866/PKU.WHXB202005020 shu

Guest Pre-Intercalation Strategy to Boost the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes

  • Corresponding author: Zhou Jiang, zhou_jiang@csu.edu.cn Liang Shuquan, lsq@csu.edu.cn
  • Received Date: 8 May 2020
    Revised Date: 17 June 2020
    Accepted Date: 2 July 2020
    Available Online: 13 July 2020

    Fund Project: the National Natural Science Foundation of China 51972346the National Natural Science Foundation of China 51932011The project was supported by the National Natural Science Foundation of China (51932011, 51972346, 51802356, 51872334) and the Innovation Driven Program of Central South University, China (2020CX024)the National Natural Science Foundation of China 51872334the National Natural Science Foundation of China 51802356the Innovation Driven Program of Central South University, China 2020CX024

  • The growing demand for electric vehicles, communication devices, and grid-scale energy storage systems urgently calls for the development of rechargeable batteries. Although lithium-ion batteries have dominated the new energy market for decades, there are challenges limiting their development, such as the high cost of lithium, as well as the toxicity and flammability of the organic electrolyte. In recent years, aqueous zinc-ion batteries (ZIBs) have gained much attention due to their advantages of high safety, high capacity, low cost, and nontoxicity. Materials based on multivalent vanadium and manganese have shown great potential for application as cathodes that are compatible with the metallic zinc anode in ZIBs. However, the commercialization of ZIBs has been hindered by the choice of cathodes, since the cathode materials show unsatisfactory energy densities and suffer from severe structural collapse, dissolution of the electrode components, sluggish reaction kinetics and detrimental side reactions during cycling. This stalemate was broken when a Zn2+/H2O co-inserted V2O5 (Zn0.25V2O5·nH2O) material was first reported in 2016, and it showed much higher cycling stability and capacity than those of V2O5. The Zn2+ and water molecules pre-intercalated into the interlayer served as pillars to maintain the crystal structure and increase the interplanar spacing, leading to high structural stability and fast Zn2+ diffusion. Since then, several guest ions (Li+, Na+, K+, Ca2+, NH4+, PO43-, N3-, etc.) and molecules (H2O, polyethylene dioxythiophene (PEDOT), polyaniline (PANI, etc.) have been widely used to improve the electrochemical performance of aqueous ZIB cathodes, especially with manganese-based and vanadium-based materials. It is demonstrated that pre-intercalation of the guest ions or molecules can effectively optimize the electronic structure, regulate the interplanar spacing, and improve the reaction kinetics of the host. The local coordination structure of the host with pre-intercalated guest ions/molecules directly influences the zinc-ion storage performance. For example, sodium vanadates with a tunneled structure generally show better cycling stability than those with a layered structure due to their stronger Na-O bonds, since the O atoms on their layer surfaces are only single-connected. Manganese dissolution could be greatly suppressed by intercalation of the large potassium ions into tunneled α-MnO2, where solid K-O bonds act as pillars to be connected with Mn polyhedrons, and thus strengthen the structure. New mechanisms underlying reduction/displacement reactions could also be revealed in vanadates upon the introduction of Ag+ and Cu2+. Thus, we believe that guest pre-intercalation is a promising method for optimizing the zinc-ion storage performance of the appropriate cathodes and is worthy for further exploration. Here we have reviewed the recent advances in manganese-based and vanadium-based cathodes via the guest pre-intercalation strategy, discussed the related advantages and challenges. The future research direction for these two kinds of aqueous ZIB cathodes is also prospected.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Liang, Y.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu, D.; Liu, Y.; Titirici, M. M.; Chueh, Y. L.; et al. InfoMat 2019, 1, 6. doi: 10.1002/inf2.12000  doi: 10.1002/inf2.12000

    3. [3]

      Wang, S.; Yang, Y.; Dong, Y.; Zhang, Z.; Tang, Z. J. Adv. Ceram. 2019, 8, 1. doi: 10.1007/s40145-018-0292-2  doi: 10.1007/s40145-018-0292-2

    4. [4]

      Evarts, E. C. Nature 2015, 526, S93. doi: 10.1038/526S93a  doi: 10.1038/526S93a

    5. [5]

      Wessells, C. D.; Huggins, R. A.; Cui, Y. Nat. Commun. 2011, 2, 550. doi: 10.1038/ncomms1563  doi: 10.1038/ncomms1563

    6. [6]

      Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y. Nano Lett. 2011, 11, 5421. doi: 10.1021/nl203193q  doi: 10.1021/nl203193q

    7. [7]

      Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598  doi: 10.1002/aenm.201200598

    8. [8]

      Zhang, H.; Ye, K.; Shao, S.; Wang, X.; Cheng, K.; Xiao, X.; Wang, G.; Cao, D. Electrochim. Acta 2017, 229, 371. doi: 10.1016/j.electacta.2017.01.110  doi: 10.1016/j.electacta.2017.01.110

    9. [9]

      Liu, S.; Hu, J. J.; Yan, N. F.; Pan, G. L.; Li, G. R.; Gao, X. P. Energy Environ. Sci. 2012, 5, 9743. doi: 10.1039/c2ee22987k  doi: 10.1039/c2ee22987k

    10. [10]

      Adil, M.; Sarkar, A.; Roy, A.; Panda, M. R.; Nagendra, A.; Mitra, S. ACS Appl. Mater. Inter. 2020, 12, 11489. doi: 10.1021/acsami.9b20129  doi: 10.1021/acsami.9b20129

    11. [11]

      Wu, X.; Xiang, Y.; Peng, Q.; Wu, X.; Li, Y.; Tang, F.; Song, R.; Liu, Z.; He, Z.; Wu, X. J. Mater. Chem. A 2017, 5, 17990. doi: 10.1039/c7ta00100b  doi: 10.1039/c7ta00100b

    12. [12]

      Liu, S.; Shao, L.; Zhang, X.; Tao, Z.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34, 581.  doi: 10.3866/PKU.WHXB201711222

    13. [13]

      Fang, G.; Wu, Z.; Zhou, J.; Zhu, C.; Cao, X.; Lin, T.; Chen, Y.; Wang, C.; Pan, A.; Liang, S. Adv. Energy Mater. 2018, 8, 1703155. doi: 10.1002/aenm.201703155  doi: 10.1002/aenm.201703155

    14. [14]

      Cao, X.; Zhou, J.; Pan, A.; Liang, S. Acta Phys. -Chim. Sin. 2020, 36, 1905018.  doi: 10.3866/PKU.WHXB201905018

    15. [15]

      Zhao, C.; Lu, Y.; Chen, L.; Hu, Y. S. InfoMat 2019, 2, 126. doi: 10.1002/inf2.12027  doi: 10.1002/inf2.12027

    16. [16]

      Feng, Y.; Chen, S.; Wang, J.; Lu, B. J. Energy Chem. 2020, 43, 129. doi: 10.1016/j.jechem.2019.08.013  doi: 10.1016/j.jechem.2019.08.013

    17. [17]

      Xu, W.; Wang, Y. Nano-Micro Lett. 2019, 11, 90. doi: 10.1007/s40820-019-0322-9  doi: 10.1007/s40820-019-0322-9

    18. [18]

      Li, C.; Xie, X.; Liang, S.; Zhou, J. Energy Environ. Mater. 2020. doi: 10.1002/eem2.12067  doi: 10.1002/eem2.12067

    19. [19]

      Shoji, T.; Hishinuma, M.; Yamamoto, T. J. Appl. Electrochem. 1988, 18, 521. doi: 10.1007/bf01022245  doi: 10.1007/bf01022245

    20. [20]

      Bai, S.; Li, X.; Wen, Y.; Cheng, J.; Cao, G.; Yang, Y.; Li, D. Acta Phys. -Chim. Sin. 2016, 32, 2007.  doi: 10.3866/PKU.WHXB201604261

    21. [21]

      Song, M.; Tan, H.; Chao, D.; Fan, H.J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564  doi: 10.1002/adfm.201802564

    22. [22]

      Xie, X.; Liang, S.; Gao, J.; Guo, S.; Guo, J.; Wang, C.; Xu, G.; Wu, X.; Chen, G.; Zhou, J. Energy Environ. Sci. 2020, 13, 503. doi: 10.1039/c9ee03545a  doi: 10.1039/c9ee03545a

    23. [23]

      Deng, C.; Xie, X.; Han, J.; Tang, Y.; Gao, J.; Liu, C.; Shi, X.; Zhou, J.; Liang, S. Adv. Funct. Mater. 2020, 2000599. doi: 10.1002/adfm.202000599  doi: 10.1002/adfm.202000599

    24. [24]

      Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Nat. Commun. 2017, 8, 405. doi: 10.1038/s41467-017-00467-x  doi: 10.1038/s41467-017-00467-x

    25. [25]

      Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; Wang, C. J. Am. Chem. Soc. 2017, 139, 9775. doi: 10.1021/jacs.7b04471  doi: 10.1021/jacs.7b04471

    26. [26]

      Hu, P.; Zhu, T.; Wang, X.; Wei, X.; Yan, M.; Li, J.; Luo, W.; Yang, W.; Zhang, W.; Zhou, L.; et al. Nano Lett. 2018, 18, 1758. doi: 10.1021/acs.nanolett.7b04889  doi: 10.1021/acs.nanolett.7b04889

    27. [27]

      Yadav, G. G.; Turney, D.; Huang, J.; Wei, X.; Banerjee, S. ACS Energy Lett. 2019, 4, 2144. doi: 10.1021/acsenergylett.9b01643  doi: 10.1021/acsenergylett.9b01643

    28. [28]

      Guo, X.; Zhou, J.; Bai, C.; Li, X.; Fang, G.; Liang, S. Mater. Today Energy 2020, 16, 100396. doi: 10.1016/j.mtener.2020.100396  doi: 10.1016/j.mtener.2020.100396

    29. [29]

      Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Nat. Energy 2016, 1, 16039. doi: 10.1038/nenergy.2016.39  doi: 10.1038/nenergy.2016.39

    30. [30]

      Liu, F.; Chen, Z.; Fang, G.; Wang, Z.; Cai, Y.; Tang, B.; Zhou, J.; Liang, S. Nano-Micro Lett. 2019, 11, 25. doi: 10.1007/s40820-019-0256-2  doi: 10.1007/s40820-019-0256-2

    31. [31]

      Wang, P.; Shi, X.; Wu, Z.; Guo, S.; Zhou, J.; Liang, S. Carbon Energy 2020, 2, 294. doi: 10.1002/cey2.39  doi: 10.1002/cey2.39

    32. [32]

      Li, X.; Li, M.; Yang, Q.; Li, H.; Xu, H.; Chai, Z.; Chen, K.; Liu, Z.; Tang, Z.; Ma, L.; et al. ACS Nano 2020, 14, 541. doi: 10.1021/acsnano.9b06866  doi: 10.1021/acsnano.9b06866

    33. [33]

      Li, Z.; Ganapathy, S.; Xu, Y.; Zhou, Z.; Sarilar, M.; Wagemaker, M. Adv. Energy Mater. 2019, 9, 1900237. doi: 10.1002/aenm.201900237  doi: 10.1002/aenm.201900237

    34. [34]

      Naveed, A.; Yang, H.; Shao, Y.; Yang, J.; Yanna, N.; Liu, J.; Shi, S.; Zhang, L.; Ye, A.; He, B.; Wang, J. Adv. Mater. 2019, 31, e1900668. doi: 10.1002/adma.201900668  doi: 10.1002/adma.201900668

    35. [35]

      Xu, D.; Li, B.; Wei, C.; He, Y. B.; Du, H.; Chu, X.; Qin, X.; Yang, Q. H.; Kang, F. Electrochim. Acta 2014, 133, 254. doi: 10.1016/j.electacta.2014.04.001  doi: 10.1016/j.electacta.2014.04.001

    36. [36]

      Wu, Y.; Wang, M.; Tao, Y.; Zhang, K.; Cai, M.; Ding, Y.; Liu, X.; Hayat, T.; Alsaedi, A.; Dai, S. Adv. Funct. Mater. 2019, 30, 1907120. doi: 10.1002/adfm.201907120  doi: 10.1002/adfm.201907120

    37. [37]

      Zhao, Y.; Zhu, Y.; Zhang, X. InfoMat 2020, 2, 237. doi: 10.1002/inf2.12042  doi: 10.1002/inf2.12042

    38. [38]

      Ma, L.; Chen, S.; Long, C.; Li, X.; Zhao, Y.; Liu, Z.; Huang, Z.; Dong, B.; Zapien, J.A.; Zhi, C. Adv. Energy Mater. 2019, 9, 1902446. doi: 10.1002/aenm.201902446  doi: 10.1002/aenm.201902446

    39. [39]

      Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Adv. Energy Mater. 2015, 5, 1400930. doi: 10.1002/aenm.201400930  doi: 10.1002/aenm.201400930

    40. [40]

      Kasiri, G.; Glenneberg, J.; Bani Hashemi, A.; Kun, R.; La Mantia, F. Energy Storage Mater. 2019, 19, 360. doi: 10.1016/j.ensm.2019.03.006  doi: 10.1016/j.ensm.2019.03.006

    41. [41]

      Wan, F.; Zhang, L.; Wang, X.; Bi, S.; Niu, Z.; Chen, J. Adv. Funct. Mater. 2018, 28, 1804975. doi: 10.1002/adfm.201804975  doi: 10.1002/adfm.201804975

    42. [42]

      Shi, H. Y.; Ye, Y. J.; Liu, K.; Song, Y.; Sun, X. Angew. Chem. Int. Edit. 2018, 57, 16359. doi: 10.1002/anie.201808886  doi: 10.1002/anie.201808886

    43. [43]

      Wang, Z.; Ruan, Z.; Liu, Z.; Wang, Y.; Tang, Z.; Li, H.; Zhu, M.; Hung, T. F.; Liu, J.; Shi, Z.; Zhi, C. J. Mater. Chem. A 2018, 6, 8549. doi: 10.1039/c8ta01172a  doi: 10.1039/c8ta01172a

    44. [44]

      Yan, L.; Zeng, X.; Li, Z.; Meng, X.; Wei, D.; Liu, T.; Ling, M.; Lin, Z.; Liang, C. Mater. Today Energy 2019, 13, 323. doi: 10.1016/j.mtener.2019.06.011  doi: 10.1016/j.mtener.2019.06.011

    45. [45]

      Yue, X.; Liu, H.; Liu, P. Chem. Commun. 2019, 55, 1647. doi: 10.1039/c8cc10060h  doi: 10.1039/c8cc10060h

    46. [46]

      Cui, J.; Guo, Z.; Yi, J.; Liu, X.; Wu, K.; Liang, P.; Li, Q.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. ChemSusChem 2020, 55, 1647. doi: 10.1002/cssc.201903265  doi: 10.1002/cssc.201903265

    47. [47]

      Wang, Y.; Wang, C.; Ni, Z.; Gu, Y.; Wang, B.; Guo, Z.; Wang, Z.; Bin, D.; Ma, J.; Wang, Y. Adv. Mater. 2020, 32, e2000338. doi: 10.1002/adma.202000338  doi: 10.1002/adma.202000338

    48. [48]

      Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A.; Zhi, C. Energy Environ. Sci. 2018, 11, 2521. doi: 10.1039/C8EE01415A  doi: 10.1039/C8EE01415A

    49. [49]

      Meng, J.; Yang, Z.; Chen, L.; Qin, H.; Cui, F.; Jiang, Y.; Zeng, X. Mater. Today Energy 2020, 15, 100370. doi: 10.1016/j.mtener.2019.100370  doi: 10.1016/j.mtener.2019.100370

    50. [50]

      Liu, Y.; Wang, J.; Zeng, Y.; Liu, J.; Liu, X.; Lu, X. Small 2020, 16, e1907458. doi: 10.1002/smll.201907458  doi: 10.1002/smll.201907458

    51. [51]

      Cheng, Y.; Luo, L.; Zhong, L.; Chen, J.; Li, B.; Wang, W.; Mao, S. X.; Wang, C.; Sprenkle, V. L.; Li, G.; Liu, J. ACS Appl. Mater. Inter. 2016, 8, 13673. doi: 10.1021/acsami.6b03197  doi: 10.1021/acsami.6b03197

    52. [52]

      Xu, X.; Xiong, F.; Meng, J.; Wang, X.; Niu, C.; An, Q.; Mai, L. Adv. Funct. Mater. 2020, 30, 1904398. doi: 10.1002/adfm.201904398  doi: 10.1002/adfm.201904398

    53. [53]

      Zhu, C.; Fang, G.; Liang, S.; Chen, Z.; Wang, Z.; Ma, J.; Wang, H.; Tang, B.; Zheng, X.; Zhou, J. Energy Storage Mater. 2020, 24, 394. doi: 10.1016/j.ensm.2019.07.030  doi: 10.1016/j.ensm.2019.07.030

    54. [54]

      Fang, G.; Zhou, J.; Pan, A.; Liang, S. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426  doi: 10.1021/acsenergylett.8b01426

    55. [55]

      He, P.; Zhang, G.; Liao, X.; Yan, M.; Xu, X.; An, Q.; Liu, J.; Mai, L. Adv. Energy Mater. 2018, 8, 1702463. doi: 10.1002/aenm.201702463  doi: 10.1002/aenm.201702463

    56. [56]

      Canepa, P.; Sai Gautam, G.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Chem. Rev. 2017, 117, 4287. doi: 10.1021/acs.chemrev.6b00614  doi: 10.1021/acs.chemrev.6b00614

    57. [57]

      Wang, F.; Hu, E.; Sun, W.; Gao, T.; Ji, X.; Fan, X.; Han, F.; Yang, X. Q.; Xu, K.; Wang, C. Energy Environ. Sci. 2018, 11, 3168. doi: 10.1039/c8ee01883a  doi: 10.1039/c8ee01883a

    58. [58]

      Whittingham, M. S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c  doi: 10.1021/cr020731c

    59. [59]

      Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894. doi: 10.1021/jacs.6b05958  doi: 10.1021/jacs.6b05958

    60. [60]

      Zhang, T.; Tang, Y.; Fang, G.; Zhang, C.; Zhang, H.; Guo, X.; Cao, X.; Zhou, J.; Pan, A.; Liang, S. Adv. Funct. Mater. 2020, 2002711. doi: 10.1002/adfm.202002711  doi: 10.1002/adfm.202002711

    61. [61]

      Soundharrajan, V.; Sambandam, B.; Kim, S.; Alfaruqi, M. H.; Putro, D. Y.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Nano Lett. 2018, 18, 2402. doi: 10.1021/acs.nanolett.7b05403  doi: 10.1021/acs.nanolett.7b05403

    62. [62]

      Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. Nat. Energy 2016, 1, 16119. doi: 10.1038/nenergy.2016.119  doi: 10.1038/nenergy.2016.119

    63. [63]

      Tang, B.; Zhou, J.; Fang, G.; Liu, F.; Zhu, C.; Wang, C.; Pan, A.; Liang, S. J. Mater. Chem. A 2019, 7, 940. doi: 10.1039/c8ta09338e  doi: 10.1039/c8ta09338e

    64. [64]

      Tang, B.; Shan, L.; Liang, S.; Zhou, J. Energy Environ. Sci. 2019, 12, 3288. doi: 10.1039/c9ee02526j  doi: 10.1039/c9ee02526j

    65. [65]

      Jia, D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A.; Wang, L.; Yue, L.; Li, D.; Li, C.; Liu, J. Nano Res. 2020, 13, 215. doi: 10.1007/s12274-019-2603-5  doi: 10.1007/s12274-019-2603-5

    66. [66]

      Wang, H.; Liu, S.; Ren, Y.; Wang, W.; Tang, A. Energy Environ. Sci. 2012, 5, 6173. doi: 10.1039/c2ee03215e  doi: 10.1039/c2ee03215e

    67. [67]

      Dong, Y.; Li, S.; Zhao, K.; Han, C.; Chen, W.; Wang, B.; Wang, L.; Xu, B.; Wei, Q.; Zhang, L.; et al. Energy Environ. Sci. 2015, 8, 1267. doi: 10.1039/c5ee00036j  doi: 10.1039/c5ee00036j

    68. [68]

      Fang, G.; Zhou, J.; Liang, C.; Cai, Y.; Pan, A.; Tan, X.; Tang, Y.; Liang, S. J. Mater. Chem. A 2016, 4, 14408. doi: 10.1039/C6TA05568K  doi: 10.1039/C6TA05568K

    69. [69]

      Fang, G.; Liang, S.; Chen, Z.; Cui, P.; Zheng, X.; Pan, A.; Lu, B.; Lu, X.; Zhou, J. Adv. Funct. Mater. 2019, 29, 1905267. doi: 10.1002/adfm.201905267  doi: 10.1002/adfm.201905267

    70. [70]

      Chen, D.; Tan, H.; Rui, X.; Zhang, Q.; Feng, Y.; Geng, H.; Li, C.; Huang, S.; Yu, Y. InfoMat 2019, 1, 251. doi: 10.1002/inf2.12011  doi: 10.1002/inf2.12011

    71. [71]

      Tan, H.; Yu, X. Z.; Huang, K.; Zhong, J.; Lu, B. J. Energy Chem. 2020, 51, 388. doi: 10.1016/j.jechem.2020.03.053  doi: 10.1016/j.jechem.2020.03.053

    72. [72]

      Liu, Z.; Wang, J.; Lu, B. Sci. Bull. 2020, 65, 1242. doi: 10.1016/j.scib.2020.04.010  doi: 10.1016/j.scib.2020.04.010

    73. [73]

      Park, H. K.; Podolske, K.; Munshi, Z.; Smyrl, W.; Owens, B. J. Ind. Eng. Chem. 1995, 1, 28.

    74. [74]

      Le, D. B.; Passerini, S.; Coustier, F.; Guo, J.; Soderstrom, T.; Owens, B. B.; Smyrl, W. H. Chem. Mater. 1998, 10, 682. doi: 10.1021/cm9705101  doi: 10.1021/cm9705101

    75. [75]

      Giorgetti, M.; Passerini, S.; Berrettoni, M.; Smyrl, W. H. J. Synchrotron Radiat. 1999, 6, 743. doi: 10.1107/S0909049598015970  doi: 10.1107/S0909049598015970

    76. [76]

      Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Chem. Commun. 2018, 54, 4457. doi: 10.1039/C8CC02250J  doi: 10.1039/C8CC02250J

    77. [77]

      Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y.; et al. Adv. Mater. 2018, 30, 1703725. doi: 10.1002/adma.201703725  doi: 10.1002/adma.201703725

    78. [78]

      Pang, Q.; Sun, C.; Yu, Y.; Zhao, K.; Zhang, Z.; Voyles, P. M.; Chen, G.; Wei, Y.; Wang, X. Adv. Energy Mater. 2018, 8, 1800144. doi: 10.1002/aenm.201800144  doi: 10.1002/aenm.201800144

    79. [79]

      Zhang, N.; Jia, M.; Dong, Y.; Wang, Y.; Xu, J.; Liu, Y.; Jiao, L.; Cheng, F. Adv. Funct. Mater. 2019, 29, 1807331. doi: 10.1002/adfm.201807331  doi: 10.1002/adfm.201807331

    80. [80]

      Shin, J.; Choi, D.S.; Lee, H. J.; Jung, Y.; Choi, J. W. Adv. Energy Mater. 2019, 9, 1900083. doi: 10.1002/aenm.201900083  doi: 10.1002/aenm.201900083

    81. [81]

      Xia, C.; Guo, J.; Li, P.; Zhang, X.; Alshareef, H. N. Angew. Chem. Int. Edit. 2018, 57, 3943. doi: 10.1002/anie.201713291  doi: 10.1002/anie.201713291

    82. [82]

      Yang, Y.; Tang, Y.; Liang, S.; Wu, Z.; Fang, G.; Cao, X.; Wang, C.; Lin, T.; Pan, A.; Zhou, J. Nano Energy 2019, 61, 617. doi: 10.1016/j.nanoen.2019.05.005  doi: 10.1016/j.nanoen.2019.05.005

    83. [83]

      Geng, H.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y.; Li, C. C. Adv. Funct. Mater. 2019, 30, 1907684. doi: 10.1002/adfm.201907684  doi: 10.1002/adfm.201907684

    84. [84]

      Yang, Y.; Tang, Y.; Fang, G.; Shan, L.; Guo, J.; Zhang, W.; Wang, C.; Wang, L.; Zhou, J.; Liang, S. Energy Environ. Sci. 2018, 11, 3157. doi: 10.1039/c8ee01651h  doi: 10.1039/c8ee01651h

    85. [85]

      Wang, L.; Huang, K. W.; Chen, J.; Zheng, J. Sci. Adv. 2019, 5, eaax4279. doi: 10.1126/sciadv.aax4279  doi: 10.1126/sciadv.aax4279

    86. [86]

      Li, J.; McColl, K.; Lu, X.; Sathasivam, S.; Dong, H.; Kang, L.; Li, Z.; Zhao, S.; Kafizas, A. G.; Wang, R.; et al. Adv. Energy Mater. 2020, 10, 2000058. doi: 10.1002/aenm.202000058  doi: 10.1002/aenm.202000058

    87. [87]

      Shan, L.; Yang, Y.; Zhang, W.; Chen, H.; Fang, G.; Zhou, J.; Liang, S. Energy Storage Mater. 2019, 18, 10. doi: 10.1016/j.ensm.2018.08.008  doi: 10.1016/j.ensm.2018.08.008

    88. [88]

      Ma, L.; Li, N.; Long, C.; Dong, B.; Fang, D.; Liu, Z.; Zhao, Y.; Li, X.; Fan, J.; Chen, S.; et al. Adv. Funct. Mater. 2019, 29, 1906142. doi: 10.1002/adfm.201906142  doi: 10.1002/adfm.201906142

    89. [89]

      Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Islam, S.; Pham, D. T.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; et al. Chem. Mater. 2017, 29, 1684. doi: 10.1021/acs.chemmater.6b05092  doi: 10.1021/acs.chemmater.6b05092

    90. [90]

      Guo, X.; Fang, G.; Zhang, W.; Zhou, J.; Shan, L.; Wang, L.; Wang, C.; Lin, T.; Tang, Y.; Liang, S. Adv. Energy Mater. 2018, 8, 1801819. doi: 10.1002/aenm.201801819  doi: 10.1002/aenm.201801819

    91. [91]

      Tang, B.; Fang, G.; Zhou, J.; Wang, L.; Lei, Y.; Wang, C.; Lin, T.; Tang, Y.; Liang, S. Nano Energy 2018, 51, 579. doi: 10.1016/j.nanoen.2018.07.014  doi: 10.1016/j.nanoen.2018.07.014

    92. [92]

      Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8  doi: 10.1038/s41467-018-04060-8

    93. [93]

      Zhu, K.; Wu, T.; Huang, K. Adv. Energy Mater. 2019, 9, 1901968. doi: 10.1002/aenm.201901968  doi: 10.1002/aenm.201901968

    94. [94]

      Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N. Adv. Mater. 2018, 30, 1705580. doi: 10.1002/adma.201705580  doi: 10.1002/adma.201705580

    95. [95]

      Liu, Y.; Li, Q.; Ma, K.; Yang, G.; Wang, C. ACS Nano 2019, 13, 12081. doi: 10.1021/acsnano.9b06484  doi: 10.1021/acsnano.9b06484

    96. [96]

      Zhang, W.; Liang, S.; Fang, G.; Yang, Y.; Zhou, J. Nano-Micro Lett. 2019, 11, 69. doi: 10.1007/s40820-019-0300-2  doi: 10.1007/s40820-019-0300-2

    97. [97]

      Wang, F.; Zhang, Y.; Zhang, L.; Liu, D.; Wang, C.; Song, L.; Niu, Z.; Chen, J. Angew. Chem. Int. Edit. 2019, 58, 7062. doi: 10.1002/anie.201902679  doi: 10.1002/anie.201902679

    98. [98]

      Li, G.; Yang, Z.; Jiang, Y.; Jin, C.; Huang, W.; Ding, X.; Huang, Y. Nano Energy 2016, 25, 211. doi: 10.1016/j.nanoen.2016.04.051  doi: 10.1016/j.nanoen.2016.04.051

    99. [99]

      Li, W.; Wang, K.; Cheng, S.; Jiang, K. Energy Storage Mater. 2018, 15, 14. doi: 10.1016/j.ensm.2018.03.003  doi: 10.1016/j.ensm.2018.03.003

    100. [100]

      Bin, D.; Huo, W.; Yuan, Y.; Huang, J.; Liu, Y.; Zhang, Y.; Dong, F.; Wang, Y.; Xia, Y. Chem 2020, 6, 968. doi: 10.1016/j.chempr.2020.02.001  doi: 10.1016/j.chempr.2020.02.001

    101. [101]

      Verma, V.; Kumar, S.; Manalastas, W.; Zhao, J.; Chua, R.; Meng, S.; Kidkhunthod, P.; Srinivasan, M. ACS Appl. Energy Mater. 2019, 2, 8667. doi: 10.1021/acsaem.9b01632  doi: 10.1021/acsaem.9b01632

    102. [102]

      Yang, F.; Zhu, Y.; Xia, Y.; Xiang, S.; Han, S.; Cai, C.; Wang, Q.; Wang, Y.; Gu, M. J. Power Sources 2020, 451, 227767. doi: 10.1016/j.jpowsour.2020.227767  doi: 10.1016/j.jpowsour.2020.227767

    103. [103]

      Zhang, Y.; Li, H.; Huang, S.; Fan, S.; Sun, L.; Tian, B.; Chen, F.; Wang, Y.; Shi, Y.; Yang, H. Y. Nano-Micro Lett. 2020, 12, 60. doi: 10.1007/s40820-020-0385-7  doi: 10.1007/s40820-020-0385-7

    104. [104]

      Wang, X.; Xi, B.; Ma, X.; Feng, Z.; Jia, Y.; Feng, J.; Qian, Y.; Xiong, S. Nano Lett. 2020, 20, 2899. doi: 10.1021/acs.nanolett.0c00732  doi: 10.1021/acs.nanolett.0c00732

    105. [105]

      Liu, C.; Neale, Z.; Zheng, J.; Jia, X.; Huang, J.; Yan, M.; Tian, M.; Wang, M.; Yang, J.; Cao, G. Energy Environ. Sci. 2019, 12, 2273. doi: 10.1039/c9ee00956f  doi: 10.1039/c9ee00956f

    106. [106]

      Guo, S.; Fang, G.; Liang, S.; Chen, M.; Wu, X.; Zhou, J. Acta Mater. 2019, 180, 51. doi: 10.1016/j.actamat.2019.08.052  doi: 10.1016/j.actamat.2019.08.052

    107. [107]

      Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. J. Mater. Chem. A 2018, 6, 3850. doi: 10.1039/c7ta11237h  doi: 10.1039/c7ta11237h

    108. [108]

      Shan, L.; Zhou, J.; Han, M.; Fang, G.; Cao, X.; Wu, X.; Liang, S. J. Mater. Chem. A 2019, 7, 7355. doi: 10.1039/C9TA00125E  doi: 10.1039/C9TA00125E

    109. [109]

      Liu, Y.; Li, C.; Xu, J.; Ou, M.; Fang, C.; Sun, S.; Qiu, Y.; Peng, J.; Lu, G.; Li, Q.; et al. Nano Energy 2020, 67, 104211. doi: 10.1016/j.nanoen.2019.104211  doi: 10.1016/j.nanoen.2019.104211

    110. [110]

      Peng, Z.; Wei, Q.; Tan, S.; He, P.; Luo, W.; An, Q.; Mai, L. Chem. Commun. 2018, 54, 4041. doi: 10.1039/c8cc00987b  doi: 10.1039/c8cc00987b

    111. [111]

      Ding, J.; Du, Z.; Li, B.; Wang, L.; Wang, S.; Gong, Y.; Yang, S. Adv. Mater. 2019, 31, e1904369. doi: 10.1002/adma.201904369  doi: 10.1002/adma.201904369

    112. [112]

      Cao, X.; Pan, A.; Yin, B.; Fang, G.; Wang, Y.; Kong, X.; Zhu, T.; Zhou, J.; Cao, G.; Liang, S. Nano Energy 2019, 60, 312. doi: 10.1016/j.nanoen.2019.03.066  doi: 10.1016/j.nanoen.2019.03.066

    113. [113]

      Zeng, J.; Zhang, Z.; Guo, X.; Li, G. J. Mater. Chem. A 2019, 7, 21079. doi: 10.1039/C9TA08086D  doi: 10.1039/C9TA08086D

    114. [114]

      Xu, C.; Li, B.; Du, H.; Kang, F. Angew. Chem. Int. Edit. 2012, 51, 933. doi: 10.1002/anie.201106307  doi: 10.1002/anie.201106307

    115. [115]

      Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Chem. Mater. 2015, 27, 3609. doi: 10.1021/cm504717p  doi: 10.1021/cm504717p

    116. [116]

      Wei, C.; Xu, C.; Li, B.; Du, H.; Kang, F. J. Phys. Chem. Solids 2012, 73, 1487. doi: 10.1016/j.jpcs.2011.11.038  doi: 10.1016/j.jpcs.2011.11.038

    117. [117]

      Jiang, B.; Xu, C.; Wu, C.; Dong, L.; Li, J.; Kang, F. Electrochim. Acta 2017, 229, 422. doi: 10.1016/j.electacta.2017.01.163  doi: 10.1016/j.electacta.2017.01.163

    118. [118]

      Zhu, C.; Fang, G.; Zhou, J.; Guo, J.; Wang, Z.; Wang, C.; Li, J.; Tang, Y.; Liang, S. J. Mater. Chem. A 2018, 6, 9677. doi: 10.1039/c8ta01198b  doi: 10.1039/c8ta01198b

    119. [119]

      Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Energy Storage Mater. 2020, 28, 407. doi: 10.1016/j.ensm.2019.12.021  doi: 10.1016/j.ensm.2019.12.021

    120. [120]

      Huang, Y.; Mou, J.; Liu, W.; Wang, X.; Dong, L.; Kang, F.; Xu, C. Nano-Micro Lett. 2019, 11, 49. doi: 10.1007/s40820-019-0278-9  doi: 10.1007/s40820-019-0278-9

    121. [121]

      Alfaruqi, M. H.; Islam, S.; Putro, D. Y.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Sun, Y. K.; Kim, K.; Kim, J. Electrochim. Acta 2018, 276, 1. doi: 10.1016/j.electacta.2018.04.139  doi: 10.1016/j.electacta.2018.04.139

    122. [122]

      Zhai, X. Z.; Qu, J.; Hao, S. M.; Jing, Y. Q.; Chang, W.; Wang, J.; Li, W.; Abdelkrim, Y.; Yuan, H.; Yu, Z. Z. Nano-Micro Lett. 2020, 12, 56. doi: 10.1007/s40820-020-0397-3  doi: 10.1007/s40820-020-0397-3

    123. [123]

      Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Energy Environ. Sci. 2019, 12, 1999. doi: 10.1039/c9ee00718k  doi: 10.1039/c9ee00718k

    124. [124]

      Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Small 2018, 14, e1703850. doi: 10.1002/smll.201703850  doi: 10.1002/smll.201703850

    125. [125]

      Fang, G.; Zhu, C.; Chen, M.; Zhou, J.; Tang, B.; Cao, X.; Zheng, X.; Pan, A.; Liang, S. Adv. Funct. Mater. 2019, 29, 1808375. doi: 10.1002/adfm.201808375  doi: 10.1002/adfm.201808375

    126. [126]

      Zhai, D.; Li, B.; Xu, C.; Du, H.; He, Y.; Wei, C.; Kang, F. J. Power Sources 2011, 196, 7860. doi: 10.1016/j.jpowsour.2011.05.015  doi: 10.1016/j.jpowsour.2011.05.015

    127. [127]

      Liu, G.; Huang, H.; Bi, R.; Xiao, X.; Ma, T.; Zhang, L. J. Mater. Chem. A 2019, 7, 20806. doi: 10.1039/c9ta08049j  doi: 10.1039/c9ta08049j

    128. [128]

      Chen, Q.; Jin, J.; Kou, Z.; Liao, C.; Liu, Z.; Zhou, L.; Wang, J.; Mai, L. Small 2020, 16, e2000091. doi: 10.1002/smll.202000091  doi: 10.1002/smll.202000091

    129. [129]

      Lee, J.; Ju, J. B.; Cho, W. I.; Cho, B. W.; Oh, S. H. Electrochim. Acta 2013, 112, 138. doi: 10.1016/j.electacta.2013.08.136  doi: 10.1016/j.electacta.2013.08.136

    130. [130]

      Zhang, B.; Liu, Y.; Wu, X.; Yang, Y.; Chang, Z.; Wen, Z.; Wu, Y. Chem. Commun. 2014, 50, 1209. doi: 10.1039/c3cc48382g  doi: 10.1039/c3cc48382g

    131. [131]

      Wang, J.; Wang, J. G.; Liu, H.; Wei, C.; Kang, F. J. Mater. Chem. A 2019, 7, 13727. doi: 10.1039/c9ta03541a  doi: 10.1039/c9ta03541a

    132. [132]

      Sun, T.; Nian, Q.; Zheng, S.; Shi, J.; Tao, Z. Small 2020, 16, 2000597. doi: 10.1002/smll.202000597  doi: 10.1002/smll.202000597

    133. [133]

      Zhang, Y.; Deng, S.; Pan, G.; Zhang, H.; Liu, B.; Wang, X. L.; Zheng, X.; Liu, Q.; Wang, X.; Xia, X.; Tu, J. Small Methods 2020, 1900828. doi: 10.1002/smtd.201900828  doi: 10.1002/smtd.201900828

    134. [134]

      Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 2906. doi: 10.1038/s41467-018-04949-4  doi: 10.1038/s41467-018-04949-4

    135. [135]

      Zang, X.; Wang, X.; Liu, H.; Ma, X.; Wang, W.; Ji, J.; Chen, J.; Li, R.; Xue, M. ACS Appl. Mater. Inter. 2020, 12, 9347. doi: 10.1021/acsami.9b22470  doi: 10.1021/acsami.9b22470

    136. [136]

      Soundharrajan, V.; Sambandam, B.; Kim, S.; Mathew, V.; Jo, J.; Kim, S.; Lee, J.; Islam, S.; Kim, K.; Sun, Y. K.; Kim, J. ACS Energy Lett. 2018, 3, 1998. doi: 10.1021/acsenergylett.8b01105  doi: 10.1021/acsenergylett.8b01105

    137. [137]

      Zhang, M.; Wu, W.; Luo, J.; Zhang, H.; Liu, J.; Liu, X.; Yang, Y.; Lu, X. J. Mater. Chem. A 2020. doi: 10.1039/D0TA03706K  doi: 10.1039/D0TA03706K

    138. [138]

      Guo, S.; Liang, S.; Zhang, B.; Fang, G.; Ma, D.; Zhou, J. ACS Nano 2019, 13, 13456. doi: 10.1021/acsnano.9b07042  doi: 10.1021/acsnano.9b07042

    139. [139]

      Wang, L.; Cao, X.; Xu, L.; Chen, J.; Zheng, J. ACS Sustain. Chem. Eng. 2018, 6, 16055. doi: 10.1021/acssuschemeng.8b02502  doi: 10.1021/acssuschemeng.8b02502

    140. [140]

      Deng, S.; Luo, M.; Ai, C.; Zhang, Y.; Liu, B.; Huang, L.; Jiang, Z.; Zhang, Q.; Gu, L.; Lin, S.; et al. Angew. Chem. Int. Edit. 2019, 58, 16289. doi: 10.1002/anie.201909698  doi: 10.1002/anie.201909698

    141. [141]

      Zhai, T.; Wan, L.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q.; Xia, H. Adv. Mater. 2017, 29, 1604167. doi: 10.1002/adma.201604167  doi: 10.1002/adma.201604167

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(63)
  • Abstract views(2352)
  • HTML views(687)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return