Citation: Heng Yongli, Gu Zhenyi, Guo Jinzhi, Wu Xinglong. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 200501. doi: 10.3866/PKU.WHXB202005013 shu

Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries

  • Corresponding author: Wu Xinglong, xinglong@nenu.edu.cn
  • Received Date: 6 May 2020
    Revised Date: 29 May 2020
    Accepted Date: 11 June 2020
    Available Online: 17 June 2020

    Fund Project: the "13th Five-Year" Science and Technology Research from the Education Department of Jilin Province, China JJKH20201179KJthe Science Technology Program of Jilin Province, China 20200201066JCthe National Natural Science Foundation of China 91963118The project was supported by the National Natural Science Foundation of China (91963118), the Science Technology Program of Jilin Province, China (20200201066JC), and the "13th Five-Year" Science and Technology Research from the Education Department of Jilin Province, China (JJKH20201179KJ)

  • In the past few decades, lithium-ion batteries (LIBs) have dominated the market of rechargeable batteries and are extensively applied in the field of electronic devices (e.g., mobile phones and computers). However, lack of lithium resources, high cost of lithium as well as toxic and flammable organic electrolytes significantly hinder further development and large-scale application of LIBs. Therefore, it is necessary to develop next-generation green rechargeable batteries to replace LIBs. Recently, aqueous zinc-ion batteries (AZIBs) have been considered as energy storage devices with substantial development prospects for future large-scale storage systems owing to their high safety performance, low production cost, abundant zinc resources, and environmental friendliness. Typically, we use zinc metal as the anode with neutral or weakly acidic aqueous electrolyte (pH: 3.6–6.0). However, cathode materials have high requirements for AZIBs while considering the charge effect of multivalent metal ions. Currently, one of the research emphases is to develop suitable zinc ion intercalation cathode materials with stable structures and high capacities. Among all types of cathode materials, vanadium-based compounds have the advantages of low cost and high reversible capacity. Additionally, their structure is variable, mainly including layered, tunneled and natrium super ionic conductor (NASICON) structure. Therefore, vanadium-based compounds have clear application possibility in AZIBs. However, there are still several significant problems. In particular, vanadium-based compounds generally have poor conductivity and low voltage platform. Electrochemical performance can be significantly improved mainly by pre-inserting metal ions or water molecules, optimizing the electrolyte, and controlling morphology of nanomaterials (nanosheets, nanospheres, etc.). In addition, the zinc storage mechanism in vanadium-based compounds is more complicated and controversial, including Zn2+ intercalation/deintercalation mechanism, co-insertion mechanism, and conversion reaction mechanism. Moreover, different materials usually exhibit different electrochemical properties and energy storage mechanisms. In this review, we comprehensively describe the energy storage mechanisms of vanadium-based compounds and discuss the application as well as development status of vanadium-based materials in AZIBs. Further, several strategies for improving their performance are proposed, including structural design (e.g., pre-insertion of metal ions or water molecules), morphology control (e.g., carbon coating), and electrolyte optimization (e.g., adjustment of composition and concentration). In particular, pre-insertion of metal ions or water molecules in the original structure can effectively solve these problems of low ion diffusion rate, poor conductivity, and structural instability, thereby achieving excellent electrochemical performance. Moreover, the application of a high-concentration electrolyte is a simple and effective strategy that can not only significantly widen the electrochemical stability window of the aqueous electrolyte but also suppress the dissolution of vanadium, thereby effectively improving energy density and cycling stability for AZIBs. Accordingly, the future development direction of AZIBs and their vanadium-based cathode materials is further prospected, aiming at designing high-performance electrode materials for AZIBs.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    2. [2]

      Stougie, L.; Giustozzi, N.; van der Kooi, H.; Stoppato, A. Int. J. Energy Res. 2018, 42, 2916. doi: 10.1002/er.4037  doi: 10.1002/er.4037

    3. [3]

      Yang, Y. Q.; Bremner, S.; Menictas, C.; Kay, M. Renew. Sust. Energy Rev. 2018, 91, 109. doi: 10.1016/j.rser.2018.03.047  doi: 10.1016/j.rser.2018.03.047

    4. [4]

      Abraham, K. M. J. Phys. Chem. Lett. 2015, 6, 830. doi: 10.1021/jz5026273  doi: 10.1021/jz5026273

    5. [5]

      Li, M.; Lu, J.; Chen, Z. W.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    6. [6]

      Sarma, D. D.; Shukla, A. K. ACS Energy Lett. 2018, 3, 2841. doi: 10.1021/acsenergylett.8b01966  doi: 10.1021/acsenergylett.8b01966

    7. [7]

      Yoshino, A. Angew. Chem. Int. Ed. 2012, 51, 5798. doi: 10.1002/anie.201105006  doi: 10.1002/anie.201105006

    8. [8]

      Liu, Z. Y.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Chem. Soc. Rev. 2020, 49, 180. doi: 10.1039/c9cs00131j  doi: 10.1039/c9cs00131j

    9. [9]

      Wang, Y. G.; Yi, J.; Xia, Y. Y. Adv. Energy Mater. 2012, 2, 830. doi: 10.1002/aenm.201200065  doi: 10.1002/aenm.201200065

    10. [10]

      Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426  doi: 10.1021/acsenergylett.8b01426

    11. [11]

      Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Nano Energy 2019, 62, 550. doi: 10.1016/j.nanoen.2019.05.059  doi: 10.1016/j.nanoen.2019.05.059

    12. [12]

      Ming, J.; Guo, J.; Xia, C.; Wang, W. X.; Alshareef, H. N. Mater. Sci. Eng. R 2019, 135, 58. doi: 10.1016/j.mser.2018.10.002  doi: 10.1016/j.mser.2018.10.002

    13. [13]

      Selvakumaran, D.; Pan, A. Q.; Liang, S. Q.; Cao, G. Z. J. Mater. Chem. A 2019, 7, 18209. doi: 10.1039/c9ta05053a  doi: 10.1039/c9ta05053a

    14. [14]

      Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564  doi: 10.1002/adfm.201802564

    15. [15]

      Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Angew. Chem. Int. Ed. 2012, 51, 933. doi: 10.1002/anie.201106307  doi: 10.1002/anie.201106307

    16. [16]

      Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Chem. Mater. 2015, 27, 3609. doi: 10.1021/cm504717p  doi: 10.1021/cm504717p

    17. [17]

      Guo, C.; Liu, H. M.; Li, J. F.; Hou, Z. G.; Liang, J. W.; Zhou, J.; Zhu, Y. C.; Qian, Y. T. Electrochim. Acta 2019, 304, 370. doi: 10.1016/j.electacta.2019.03.008  doi: 10.1016/j.electacta.2019.03.008

    18. [18]

      Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J. P.; Pham, D. T.; Putro, D. Y.; et al. J. Mater. Chem. A 2017, 5, 23299. doi: 10.1039/c7ta07170a  doi: 10.1039/c7ta07170a

    19. [19]

      Khamsanga, S.; Pornprasertsuk, R.; Yonezawa, T.; Mohamad, A. A.; Kheawhom, S. Sci. Rep. 2019, 9, 8441. doi: 10.1038/s41598-019-44915-8  doi: 10.1038/s41598-019-44915-8

    20. [20]

      Wang, C. Y.; Wang, M. Q.; He, Z. C.; Liu, L.; Huang, Y. D. ACS Appl. Energy Mater. 2020, 3, 1742. doi: 10.1021/acsaem.9b02220  doi: 10.1021/acsaem.9b02220

    21. [21]

      Wei, C. G.; Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. J. Phys. Chem. Solids 2012, 73, 1487. doi: 10.1016/j.jpcs.2011.11.038  doi: 10.1016/j.jpcs.2011.11.038

    22. [22]

      Trocoli, R.; La Mantia, F. ChemSusChem 2015, 8, 481. doi: 10.1002/cssc.201403143  doi: 10.1002/cssc.201403143

    23. [23]

      Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Adv. Energy Mater. 2015, 5, 1400930. doi: 10.1002/aenm.201400930  doi: 10.1002/aenm.201400930

    24. [24]

      Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Sci. Rep. 2015, 5, 18263. doi: 10.1038/srep18263  doi: 10.1038/srep18263

    25. [25]

      Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. Nat. Energy 2016, 1, 16119. doi: 10.1038/nenergy.2016.119  doi: 10.1038/nenergy.2016.119

    26. [26]

      Xu, X. M.; Xiong, F. Y.; Meng, J. S.; Wang, X. P.; Niu, C. J.; An, Q. Y.; Mai, L. Q. Adv. Funct. Mater. 2020, 30, 1904398. doi: 10.1002/adfm.201904398  doi: 10.1002/adfm.201904398

    27. [27]

      Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y. Y.; Qiu, M. D.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. ACS Energy Lett. 2018, 3, 1366. doi: 10.1021/acsenergylett.8b00565  doi: 10.1021/acsenergylett.8b00565

    28. [28]

      Li, Y. K.; Huang, Z. M.; Kalambate, P. K.; Zhong, Y.; Huang, Z. M.; Xie, M. L.; Shen, Y.; Huang, Y. H. Nano Energy 2019, 60, 752. doi: 10.1016/j.nanoen.2019.04.009  doi: 10.1016/j.nanoen.2019.04.009

    29. [29]

      Zhou, J.; Shan, L. T.; Wu, Z. X.; Guo, X.; Fang, G. Z.; Liang, S. Q. Chem. Commun. 2018, 54, 4457. doi: 10.1039/c8cc02250j  doi: 10.1039/c8cc02250j

    30. [30]

      Kühnel, R. S.; Reber, D.; Battaglia, C. ACS Energy Lett. 2017, 2, 2005. doi: 10.1021/acsenergylett.7b00623  doi: 10.1021/acsenergylett.7b00623

    31. [31]

      Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894. doi: 10.1021/jacs.6b05958  doi: 10.1021/jacs.6b05958

    32. [32]

      Huang, S.; Zhu, J. C.; Tian, J. L.; Niu, Z. Q. Chem. Eur. J. 2019, 25, 14480. doi: 10.1002/chem.201902660  doi: 10.1002/chem.201902660

    33. [33]

      Hu, P.; Yan, M. Y.; Zhu, T.; Wang, X. P.; Wei, X. J.; Li, J. T.; Zhou, L.; Li, Z. H.; Chen, L. N.; Mai, L. Q. ACS Appl. Mater. Interfaces 2017, 9, 42717. doi: 10.1021/acsami.7b13110  doi: 10.1021/acsami.7b13110

    34. [34]

      Chen, X. L.; Wang, L. B.; Li, H.; Cheng, F. Y.; Chen, J. J. Energy Chem. 2019, 38, 20. doi: 10.1016/j.jechem.2018.12.023  doi: 10.1016/j.jechem.2018.12.023

    35. [35]

      Dong, Y.; Di, S. L.; Zhang, F. B.; Bian, X.; Wang, Y. Y.; Xu, J. Z.; Wang, L. B.; Cheng, F. Y.; Zhang, N. J. Mater. Chem. A 2020, 8, 3252. doi: 10.1039/c9ta13068c  doi: 10.1039/c9ta13068c

    36. [36]

      Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Nat. Commun. 2017, 8, 405. doi: 10.1038/s41467-017-00467-x  doi: 10.1038/s41467-017-00467-x

    37. [37]

      Zhang, N.; Dong, Y.; Wang, Y. Y.; Wang, Y. X.; Li, J. J.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. ACS Appl. Mater. Interfaces 2019, 11, 32978. doi: 10.1021/acsami.9b10399  doi: 10.1021/acsami.9b10399

    38. [38]

      Zhang, N.; Jia, M.; Dong, Y.; Wang, Y. Y.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. Adv. Funct. Mater. 2019, 29, 1807331. doi: 10.1002/adfm.201807331  doi: 10.1002/adfm.201807331

    39. [39]

      Chen, L. L.; Yang, Z. H.; Cui, F.; Meng, J. L.; Chen, H. Z.; Zeng, X. Appl. Surf. Sci. 2020, 507, 145137. doi: 10.1016/j.apsusc.2019.145137  doi: 10.1016/j.apsusc.2019.145137

    40. [40]

      Javed, M. S.; Lei, H.; Wang, Z. L.; Liu, B. T.; Cai, X.; Mai, W. J. Nano Energy 2020, 70, 104573. doi: 10.1016/j.nanoen.2020.104573  doi: 10.1016/j.nanoen.2020.104573

    41. [41]

      Wang, X. Y.; Ma, L. W.; Sun, J. K. ACS Appl. Mater. Interfaces 2019, 11, 41297. doi: 10.1021/acsami.9b13103  doi: 10.1021/acsami.9b13103

    42. [42]

      Wang, X. Y.; Ma, L. W.; Zhang, P. C.; Wang, H. Y.; Li, S.; Ji, S. J.; Wen, Z. S.; Sun, J. K. Appl. Surf. Sci. 2020, 502, 144207. doi: 10.1016/j.apsusc.2019.144207  doi: 10.1016/j.apsusc.2019.144207

    43. [43]

      Chen, D.; Rui, X. H.; Zhang, Q.; Geng, H. B.; Gan, L. Y.; Zhang, W.; Li, C. C.; Huang, S. M.; Yu, Y. Nano Energy 2019, 60, 171. doi: 10.1016/j.nanoen.2019.03.034  doi: 10.1016/j.nanoen.2019.03.034

    44. [44]

      Ding, Y. C.; Peng, Y. Q.; Chen, W. Y.; Niu, Y. J.; Wu, S. G.; Zhang, X. X.; Hu, L. H. Appl. Surf. Sci. 2019, 493, 368. doi: 10.1016/j.apsusc.2019.07.026  doi: 10.1016/j.apsusc.2019.07.026

    45. [45]

      Wang, H. L.; Bi, X. X.; Bai, Y.; Wu, C.; Gu, S. C.; Chen, S.; Wu, F.; Amine, K.; Lu, J. Adv. Energy Mater. 2017, 7, 1602720. doi: 10.1002/aenm.201602720  doi: 10.1002/aenm.201602720

    46. [46]

      Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y.; et al. Adv. Mater. 2018, 30, 1703725. doi: 10.1002/adma.201703725  doi: 10.1002/adma.201703725

    47. [47]

      Yang, Y. Q.; Tang, Y.; Fang, G. Z.; Shan, L. T.; Guo, J. S.; Zhang, W. Y.; Wang, C.; Wang, L. B.; Zhou, J.; Liang, S. Q. Energy Environ. Sci. 2018, 11, 3157. doi: 10.1039/c8ee01651h  doi: 10.1039/c8ee01651h

    48. [48]

      Xu, G. B.; Liu, X.; Huang, S. J.; Li, L.; Wei, X. L.; Cao, J. X.; Yang, L. W.; Chu, P. K. ACS Appl. Mater. Interfaces 2020, 12, 706. doi: 10.1021/acsami.9b17653  doi: 10.1021/acsami.9b17653

    49. [49]

      Xia, C.; Guo, J.; Li, P.; Zhang, X. X.; Alshareef, H. N. Angew. Chem. Int. Ed. 2018, 57, 3943. doi: 10.1002/anie.201713291  doi: 10.1002/anie.201713291

    50. [50]

      Lan, B. X.; Peng, Z.; Chen, L. N.; Tang, C.; Dong, S. J.; Chen, C.; Zhou, M.; Chen, C.; An, Q. Y.; Luo, P. J. Alloys Compd. 2019, 787, 9. doi: 10.1016/j.jallcom.2019.02.078  doi: 10.1016/j.jallcom.2019.02.078

    51. [51]

      Ming, F. W.; Liang, H. F.; Lei, Y. J.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. ACS Energy Lett. 2018, 3, 2602. doi: 10.1021/acsenergylett.8b01423  doi: 10.1021/acsenergylett.8b01423

    52. [52]

      Yang, Y. Q.; Tang, Y.; Liang, S. Q.; Wu, Z. X.; Fang, G. Z.; Cao, X. X.; Wang, C.; Lin, T. Q.; Pan, A. Q.; Zhou, J. Nano Energy 2019, 61, 617. doi: 10.1016/j.nanoen.2019.05.005  doi: 10.1016/j.nanoen.2019.05.005

    53. [53]

      Geng, H. B.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y. F.; Li, C. C. Adv. Funct. Mater. 2020, 30, 1907684. doi: 10.1002/adfm.201907684  doi: 10.1002/adfm.201907684

    54. [54]

      Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. Nanomicro Lett. 2019, 11, 25. doi: 10.1007/s40820-019-0256-2  doi: 10.1007/s40820-019-0256-2

    55. [55]

      Liu, S. C.; Zhu, H.; Zhang, B. H.; Li, G.; Zhu, H. K.; Ren, Y.; Geng, H. B.; Yang, Y.; Liu, Q.; Li, C. C. Adv. Mater. 2020, e2001113. doi: 10.1002/adma.202001113  doi: 10.1002/adma.202001113

    56. [56]

      Li, R. X.; Yu, X.; Bian, X. F.; Hu, F. RSC Adv. 2019, 9, 35117. doi: 10.1039/c9ra07340j  doi: 10.1039/c9ra07340j

    57. [57]

      Lee, S.; Ivanov, I. N.; Keum, J. K.; Lee, H. N. Sci. Rep. 2016, 6, 19621. doi: 10.1038/srep19621  doi: 10.1038/srep19621

    58. [58]

      Ni, J.; Jiang, W. T.; Yu, K.; Sun, F.; Zhu, Z. Q. Cryst. Res. Technol. 2011, 46, 507. doi: 10.1002/crat.201100110  doi: 10.1002/crat.201100110

    59. [59]

      Chen, L. N.; Ruan, Y. S.; Zhang, G. B.; Wei, Q. L.; Jiang, Y. L.; Xiong, T. F.; He, P.; Yang, W.; Yan, M. Y.; An, Q. Y.; et al. Chem. Mater. 2019, 31, 699. doi: 10.1021/acs.chemmater.8b03409  doi: 10.1021/acs.chemmater.8b03409

    60. [60]

      Park, J. S.; Jo, J. H.; Aniskevich, Y.; Bakavets, A.; Ragoisha, G.; Streltsov, E.; Kim, J.; Myung, S. T. Chem. Mater. 2018, 30, 6777. doi: 10.1021/acs.chemmater.8b02679  doi: 10.1021/acs.chemmater.8b02679

    61. [61]

      Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. Nano Res. 2020, 13, 215. doi: 10.1007/s12274-019-2603-5  doi: 10.1007/s12274-019-2603-5

    62. [62]

      Chen, L. L.; Yang, Z. H.; Huang, Y. G. Nanoscale 2019, 11, 13032. doi: 10.1039/c9nr03129d  doi: 10.1039/c9nr03129d

    63. [63]

      Zhang, L. S.; Miao, L.; Zhang, B.; Wang, J. S.; Liu, J.; Tan, Q. Y.; Wan, H. Z.; Jiang, J. J. J. Mater. Chem. A 2020, 8, 1731. doi: 10.1039/c9ta11031c  doi: 10.1039/c9ta11031c

    64. [64]

      Li, G. L.; Yang, Z.; Jiang, Y.; Jin, C. H.; Huang, W.; Ding, X. L.; Huang, Y. H. Nano Energy 2016, 25, 211. doi: 10.1016/j.nanoen.2016.04.051  doi: 10.1016/j.nanoen.2016.04.051

    65. [65]

      Hu, P.; Zhu, T.; Wang, X. P.; Zhou, X. F.; Wei, X. J.; Yao, X. H.; Luo, W.; Shi, C. W.; Owusu, K. A.; Zhou, L.; et al. Nano Energy 2019, 58, 492. doi: 10.1016/j.nanoen.2019.01.068  doi: 10.1016/j.nanoen.2019.01.068

    66. [66]

      Li, W.; Wang, K. L.; Cheng, S. J.; Jiang, K. Energy Stor. Mater. 2018, 15, 14. doi: 10.1016/j.ensm.2018.03.003  doi: 10.1016/j.ensm.2018.03.003

    67. [67]

      Wan, F.; Zhang, Y.; Zhang, L. L.; Liu, D. B.; Wang, C. D.; Song, L.; Niu, Z. Q.; Chen, J. Angew. Chem. Int. Ed. 2019, 58, 7062. doi: 10.1002/anie.201902679  doi: 10.1002/anie.201902679

    68. [68]

      He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; Chen, L. N.; An, Q. Y.; Mai, L. Q. Adv. Energy Mater. 2017, 7, 1601920. doi: 10.1002/aenm.201601920  doi: 10.1002/aenm.201601920

    69. [69]

      Qin, H. G.; Yang, Z. H.; Chen, L. L.; Chen, X.; Wang, L. M. J. Mater. Chem. A 2018, 6, 23757. doi: 10.1039/c8ta08133f  doi: 10.1039/c8ta08133f

    70. [70]

      Dai, X.; Wan, F.; Zhang, L. L.; Cao, H. M.; Niu, Z. Q. Energy Stor. Mater. 2019, 17, 143. doi: 10.1016/j.ensm.2018.07.022  doi: 10.1016/j.ensm.2018.07.022

    71. [71]

      Wei, T. Y.; Li, Q.; Yang, G. Z.; Wang, C. X. J. Mater. Chem. A 2018, 6, 8006. doi: 10.1039/c8ta02090f  doi: 10.1039/c8ta02090f

    72. [72]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.  doi: 10.3866/PKU.WHXB201608303

    73. [73]

      Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Q. Electrochem. Commun. 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009  doi: 10.1016/j.elecom.2011.11.009

    74. [74]

      Gu, Z. Y.; Guo, J. Z.; Yang, Y.; Zhao, X. X.; Yang, X.; Nie, X. J.; He, X. Y.; Wu, X. L. Chin. J. Inorg. Chem. 2019, 35, 1535.  doi: 10.11862/CJIC.2019.188

    75. [75]

      Guo, J. Z.; Wan, F.; Wu, X. L.; Zhang, J. P. J. Mol. Sci. 2016, 32, 265.  doi: 10.13563/j.cnki.jmolsci.2016.04.001

    76. [76]

      Hu, P.; Zou, Z. Y.; Sun, X. W.; Wang, D.; Ma, J.; Kong, Q. Y.; Xiao, D. D.; Gu, L.; Zhou, X. H.; Zhao, J. W.; et al. Adv. Mater. 2020, 32, 1907526. doi: 10.1002/adma.201907526  doi: 10.1002/adma.201907526

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    3. [3]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    16. [16]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

Metrics
  • PDF Downloads(101)
  • Abstract views(2647)
  • HTML views(895)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return