Citation: Yue Xinyang, Ma Cui, Bao Jian, Yang Siyu, Chen Dong, Wu Xiaojing, Zhou Yongning. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200501. doi: 10.3866/PKU.WHXB202005012 shu

Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies

  • Corresponding author: Zhou Yongning, ynzhou@fudan.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 6 May 2020
    Revised Date: 3 June 2020
    Accepted Date: 4 June 2020
    Available Online: 10 June 2020

    Fund Project: the Science & Technology Commission of Shanghai Municipality, China 19ZR1404200The project was supported by the Science & Technology Commission of Shanghai Municipality, China (19ZR1404200)

  • Although traditional graphite anodes ensure the cycling stability and safety of lithium-ion batteries, the inherent drawbacks, particularly low theoretical specific capacity (372 mAh·g-1) and Li-free character, of such anodes limit their applications in high energy density battery systems, especially in lithium-sulfur and lithium-air batteries. Lithium metal has been considered as one of the best next-generation anode materials due to its extremely high theoretical specific capacity (3860 mAh·g-1) and low redox potential (-3.04 V vs. the standard hydrogen electrode). The first generation of commercial rechargeable lithium metal batteries were developed by Moli Energy in the late 1980s and were not widely used due to several problems, including low coulombic efficiency, poor cycle stability, and safety hazards. These problems associated with the Li metal anode are mainly caused by lithium dendrite growth, electrode volume changes, and interface instability. During the charge and discharge processes, Li deposition is not uniform across the electrode surface. Due to the low surface energy and high migration energy of Li metal, dendrites are preferentially formed during Li deposition. These dendrites proceed to grow with successive battery cycling, penetrate the separator, and eventually reach the cathode, thereby causing short circuits and thermal runaway. Additionally, the growth of the lithium dendrite is inherently correlated with the reaction interface structure, and dendrite growth results in inhomogeneity of the SEI (solid electrolyte interface) which is inevitably formed on the Li metal surfaces. Moreover, the volume change of lithium metal anodes is of importance, particularly during battery cycling and Li stripping/deposition processes which make the SEI layers considerably unstable. SEI layers usually cannot withstand the mechanical deformation caused by volume changes; such layers continuously break and repair during cycling and consume large amounts of the electrolyte. Additionally, some Li dendrites could break and become wrapped by SEI layers to form electrically isolated "dead" Li, which results in the loss of active Li in the Li metal anode. All these factors are responsible for the failure of Li metal anodes. Herein, recent investigations on the failure mechanisms of lithium metal anodes are reviewed and summarized, including the formation of SEI layers on the surface of Li metal anodes, the behavior and mechanism of lithium dendrite growth, and the mechanism of "dead" lithium formation. Additionally, some advanced characterization techniques for investigating lithium metal anodes are introduced, including in situ tools, cryo-electron microscopy, neutron depth analysis technology, and solid state nuclear magnetic resonance technology. These techniques enable researchers to gain in-depth insights into the failure mechanisms of Li metal anodes.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    2. [2]

      Guo, Y.; Li, H.; Zhai, T. Adv. Mater. 2017, 29, 1700007. doi: 10.1002/adma.201700007  doi: 10.1002/adma.201700007

    3. [3]

      Grande, L.; Paillard, E.; Hassoun, J.; Park, J. U.; Scrosati, B. Adv. Mater. 2014, 27, 784. doi: 10.1002/adma.201403064  doi: 10.1002/adma.201403064

    4. [4]

      Kolosnitsyn, V. S.; Karaseva, E. V. Russ. J. Electrochem. 2008, 44, 506. doi: 10.1134/s1023193508050029  doi: 10.1134/s1023193508050029

    5. [5]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/C3EE40795K  doi: 10.1039/C3EE40795K

    6. [6]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    7. [7]

      Chen, L.; Fan, X.; Ji, X.; Chen, J.; Hou, S.; Wang, C. Joule 2019, 3, 732. doi: 10.1016/j.joule.2018.11.025  doi: 10.1016/j.joule.2018.11.025

    8. [8]

      Yang, C.; Yin, Y.; Zhang, S.; Li, N.; Guo, Y. Nat. Commun. 2015, 6, 1. doi: 10.1038/ncomms9058  doi: 10.1038/ncomms9058

    9. [9]

      Duan, H.; Zhang, J.; Chen, X.; Zhang, X.; Li, J.; Huang, L.; Zhang, X.; Shi, J.; Yin, Y.; Zhang, Q. J. Am. Chem. Soc. 2018, 140, 18051. doi: 10.1021/jacs.8b10488  doi: 10.1021/jacs.8b10488

    10. [10]

      Cheng, X.; Zhang, R.; Zhao, C.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    11. [11]

      Wang, D.; Zhang, W.; Zheng, W.; Cui, X.; Rojo, T.; Zhang, Q. Adv. Sci. 2017, 4, 1600168. doi: 10.1002/advs.201600168  doi: 10.1002/advs.201600168

    12. [12]

      Bouchet, R. Nat. Nanotechnol. 2014, 9, 572. doi: 10.1038/nnano.2014.165  doi: 10.1038/nnano.2014.165

    13. [13]

      Jo, H.; Song, D.; Jeong, Y.; Lee, Y. M.; Ryou, M. J. Power Sources 2019, 409, 132. doi: 10.1016/j.jpowsour.2018.09.059  doi: 10.1016/j.jpowsour.2018.09.059

    14. [14]

      Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Adv. Funct. Mater. 2018, 28, 1705838. doi: 10.1002/adfm.201705838  doi: 10.1002/adfm.201705838

    15. [15]

      Zhu, J.; Li, P.; Chen, X.; Legut, D.; Fan, Y.; Zhang, R.; Lu, Y.; Cheng, X.; Zhang, Q. Energy Storage Mater. 2019, 16, 426. doi: 10.1016/j.ensm.2018.06.023  doi: 10.1016/j.ensm.2018.06.023

    16. [16]

      Zheng, J.; Li, H. Energy Storage Sci. Tech. 2013, 5, 503.  doi: 10.3969/j.issn.2095-4239.2013.05.009

    17. [17]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2009, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    18. [18]

      Joho, F.; Rykart, B.; Blome, A.; Novák, P.; Wilhelm, H.; Spahr, M. E. J. Power Sources 2001, 97, 78. doi: 10.1016/S0378-7753(01)00595-X  doi: 10.1016/S0378-7753(01)00595-X

    19. [19]

      Peled, E. J. Electrochem. Soc. 1979, 126, 2047. doi: 10.1149/1.2128859  doi: 10.1149/1.2128859

    20. [20]

      Schlaikjer, C. R.; Liang, C. C. J. Electrochem. Soc. 1971, 118, 1447. doi: 10.1149/1.2408351  doi: 10.1149/1.2408351

    21. [21]

      Peled, E.; Golodnitsky, D.; Ardel, G. J. Electrochem. Soc. 1997, 144, L208. doi: 10.1149/1.1837858  doi: 10.1149/1.1837858

    22. [22]

      Zhang, Q.; Pan, J.; Lu, P.; Liu, Z.; Verbrugge, M. W.; Sheldon, B. W.; Cheng, Y.; Qi, Y.; Xiao, X. Nano Lett. 2016, 16, 2011. doi: 10.1021/acs.nanolett.5b05283  doi: 10.1021/acs.nanolett.5b05283

    23. [23]

      Aurbach, D.; Markovsky, B.; Levi, M. D.; Levi, E.; Schechter, A.; Moshkovich, M.; Cohen, Y. J. Power Sources 1999, 81, 95. doi: 10.1016/S0378-7753(99)00187-1  doi: 10.1016/S0378-7753(99)00187-1

    24. [24]

      Ein-Eli, Y. Electrochem. Solid-State Lett. 1999, 2, 212. doi: 10.1149/1.1390787  doi: 10.1149/1.1390787

    25. [25]

      Whittingham, M. S. Science 1976, 192, 1126. doi: 10.1126/science.192.4244.1126  doi: 10.1126/science.192.4244.1126

    26. [26]

      Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M.; Homma, T. J. Electrochem. Soc. 2010, 157, A1212. doi: 10.1149/1.3486468  doi: 10.1149/1.3486468

    27. [27]

      Ling, C.; Banerjee, D.; Matsui, M. Electrochim. Acta 2012, 76, 270. doi: 10.1016/j.electacta.2012.05.001  doi: 10.1016/j.electacta.2012.05.001

    28. [28]

      Jäckle, M.; Groß, A. J. Chem. Phys. 2014, 141, 174710. doi: 10.1063/1.4901055  doi: 10.1063/1.4901055

    29. [29]

      Ely, D. R.; García, R. E. J. Electrochem. Soc. 2013, 160, A662. doi: 10.1149/1.057304jes  doi: 10.1149/1.057304jes

    30. [30]

      Yan, K.; Lu, Z.; Lee, H.; Xiong, F.; Hsu, P.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi: 10.1038/nenergy.2016.10  doi: 10.1038/nenergy.2016.10

    31. [31]

      Liu, M.; Kutana, A.; Liu, Y.; Yakobson, B. I. J. Phys. Chem. Lett. 2014, 5, 1225. doi: 10.1021/jz500199d  doi: 10.1021/jz500199d

    32. [32]

      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    33. [33]

      Fleury, V.; Chazalviel, J.; Rosso, M.; Sapoval, B. J. Electroanal. Chem. 1990, 290, 249. doi: 10.1016/0022-0728(90)87434-l  doi: 10.1016/0022-0728(90)87434-l

    34. [34]

      Chazalviel, J. Phys. Rev. A 1990, 42, 7355. doi: 10.1103/PhysRevA.42.7355  doi: 10.1103/PhysRevA.42.7355

    35. [35]

      Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J.; Bouchet, R.; Lascaud, S. Electrochim. Acta 2006, 51, 5334. doi: 10.1016/j.electacta.2006.02.004  doi: 10.1016/j.electacta.2006.02.004

    36. [36]

      Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Energy Environ. Sci. 2016, 9, 3221. doi: 10.1039/c6ee01674j  doi: 10.1039/c6ee01674j

    37. [37]

      Sacci, R. L.; Dudney, N. J.; More, K. L.; Parent, L. R.; Arslan, I.; Browning, N. D.; Unocic, R. R. Chem. Commun. 2014, 50, 2104. doi: 10.1039/C3CC49029G  doi: 10.1039/C3CC49029G

    38. [38]

      Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Nano Energy 2017, 32, 271. doi: 10.1016/j.nanoen.2016.12.001  doi: 10.1016/j.nanoen.2016.12.001

    39. [39]

      Bieker, G.; Winter, M.; Bieker, P. Phys. Chem. Chem. Phys. 2015, 17, 8670. doi: 10.1039/C4CP05865H  doi: 10.1039/C4CP05865H

    40. [40]

      Wu, B.; Lochala, J.; Taverne, T.; Xiao, J. Nano Energy 2017, 40, 34. doi: 10.1016/j.nanoen.2017.08.005  doi: 10.1016/j.nanoen.2017.08.005

    41. [41]

      Liu, G.; Lu, W. J. Electrochem. Soc. 2017, 164, A1826. doi: 10.1149/2.0381709jes  doi: 10.1149/2.0381709jes

    42. [42]

      Chen, L.; Li, X. L.; Zhao, Q.; Cai, W. B.; Jiang, Z. Y. Acta Phys. -Chim. Sin. 2006, 22, 1155.  doi: 10.3866/PKU.WHXB20060924

    43. [43]

      Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4, 1012. doi: 10.1021/acsenergylett.9b00433  doi: 10.1021/acsenergylett.9b00433

    44. [44]

      Zou, P.; Wang, Y.; Chiang, S.; Wang, X.; Kang, F.; Yang, C. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-018-02888-8  doi: 10.1038/s41467-018-02888-8

    45. [45]

      Wang, C.; Appleby, A. J.; Little, F. E. J. Electroanal. Chem. 2002, 519, 9. doi: 10.1016/S0022-0728(01)00708-2  doi: 10.1016/S0022-0728(01)00708-2

    46. [46]

      Wu, H.; Cui, Y. Nano Today 2012, 7, 414. doi: 10.1016/j.nantod.2012.08.004  doi: 10.1016/j.nantod.2012.08.004

    47. [47]

      Li, Z.; Huang, J.; Liaw, B. Y.; Metzler, V.; Zhang, J. J. Power Sources 2014, 254, 168. doi: 10.1016/j.jpowsour.2013.12.099  doi: 10.1016/j.jpowsour.2013.12.099

    48. [48]

      Chen, K.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. J. Mater. Chem. A 2017, 5, 11671. doi: 10.1039/C7TA00371D  doi: 10.1039/C7TA00371D

    49. [49]

      Gireaud, L.; Grugeon, S.; Laruelle, S.; Yrieix, B.; Tarascon, J. Electrochem. Commun. 2006, 8, 1639. doi: 10.1016/j.elecom.2006.07.037  doi: 10.1016/j.elecom.2006.07.037

    50. [50]

      Yue, X.; Li, X.; Wang, W.; Chen, D.; Qiu, Q.; Wang, Q.; Wu, X.; Fu, Z.; Shadike, Z.; Yang, X. Nano Energy 2019, 60, 257. doi: 10.1016/j.nanoen.2019.03.057  doi: 10.1016/j.nanoen.2019.03.057

    51. [51]

      Yue, X.; Bao, J.; Yang, S.; Luo, R.; Wang, Q.; Wu, X.; Shadike, Z.; Yang, X.; Zhou, Y. Nano Energy 2020, 71, 104614. doi: 10.1016/j.nanoen.2020.104614  doi: 10.1016/j.nanoen.2020.104614

    52. [52]

      Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359, 1513. doi: 10.1126/science.aap8787  doi: 10.1126/science.aap8787

    53. [53]

      Wu, C.; Huang, H.; Lu, W.; Wei, Z.; Ni, X.; Sun, F.; Qing, P.; Liu, Z.; Ma, J.; Wei, W. Adv. Sci. 2020, 7, 1902643. doi: 10.1002/advs.201902643  doi: 10.1002/advs.201902643

    54. [54]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/ange.201803003  doi: 10.1002/ange.201803003

    55. [55]

      Rong, G.; Zhang, X.; Zhao, W.; Qiu, Y.; Liu, M.; Ye, F.; Xu, Y.; Chen, J.; Hou, Y.; Li, W. Adv. Mater. 2017, 29, 1606187. doi: 10.1002/adma.201606187  doi: 10.1002/adma.201606187

    56. [56]

      Golozar, M.; Hovington, P.; Paolella, A.; Bessette, S.; Lagacé, M.; Bouchard, P.; Demers, H.; Gauvin, R.; Zaghib, K. Nano Lett. 2018, 18, 7583. doi: 10.1021/acs.nanolett.8b03148  doi: 10.1021/acs.nanolett.8b03148

    57. [57]

      Kim, S. H.; Kim, K.; Choi, H.; Im, D.; Heo, S.; Choi, H. S. J. Mater. Chem. A 2019, 7, 13650. doi: 10.1039/C9TA02614B  doi: 10.1039/C9TA02614B

    58. [58]

      Hou, C.; Han, J.; Liu, P.; Yang, C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. Adv. Energy Mater. 2019, 9, 1902675. doi: 10.1002/aenm.201902675  doi: 10.1002/aenm.201902675

    59. [59]

      Liu, B.; Xu, W.; Tao, J.; Yan, P.; Zheng, J.; Engelhard, M. H.; Lu, D.; Wang, C.; Zhang, J. G. Adv. Energy Mater. 2018, 8, 1702340. doi: 10.1002/aenm.201702340  doi: 10.1002/aenm.201702340

    60. [60]

      Shen, C.; Hu, G.; Cheong, L. Z.; Huang, S.; Zhang, J. G.; Wang, D. Small Methods 2018, 2, 1700298. doi: 10.1002/smtd.201700298  doi: 10.1002/smtd.201700298

    61. [61]

      Kitta, M.; Sano, H. Langmuir 2017, 33, 1861. doi: 10.1021/acs.langmuir.6b04651  doi: 10.1021/acs.langmuir.6b04651

    62. [62]

      Zhang, L.; Yang, T.; Du, C.; Liu, Q.; Tang, Y.; Zhao, J.; Wang, B.; Chen, T.; Sun, Y.; Jia, P. Nat. Nanotechnol. 2020, 15, 94. doi: 10.1038/s41565-019-0604-x  doi: 10.1038/s41565-019-0604-x

    63. [63]

      Sun, F.; Zhou, D.; He, X.; Osenberg, M.; Dong, K.; Chen, L.; Mei, S.; Hilger, A.; Markötter, H.; Lu, Y. ACS Energy Lett. 2020, 5, 152. doi: 10.1021/acsenergylett.9b02424  doi: 10.1021/acsenergylett.9b02424

    64. [64]

      Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Solid State Ion. 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001  doi: 10.1016/j.ssi.2015.06.001

    65. [65]

      Shen, X.; Li, Y.; Qian, T.; Liu, J.; Zhou, J.; Yan, C.; Goodenough, J. B. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-08767-0  doi: 10.1038/s41467-019-08767-0

    66. [66]

      Li, H.; Chao, D.; Chen, B.; Chen, X.; Chuah, C.; Tang, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. J. Am. Chem. Soc. 2020, 142, 2012. doi: 10.1021/jacs.9b11774  doi: 10.1021/jacs.9b11774

    67. [67]

      Zhang, X.; Zhang, C.; Liu, Z.; Liu, L.; Xia, L. Sci. Tech. Eng. 2019, 19, 9.

    68. [68]

      Wang, X.; Li, Y.; Meng, Y. S. Joule 2018, 2, 2225. doi: 10.1016/j.joule.2018.10.005  doi: 10.1016/j.joule.2018.10.005

    69. [69]

      Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.; Joubert, L.; Chin, R.; Koh, A. L.; Yu, Y. Science 2017, 358, 506. doi: 10.1126/science.aam6014  doi: 10.1126/science.aam6014

    70. [70]

      Xu, Y.; Wu, H.; He, Y.; Chen, Q.; Zhang, J. G.; Xu, W.; Wang, C. Nano Lett. 2020, 20, 418. doi: 10.1021/acs.nanolett.9b04111  doi: 10.1021/acs.nanolett.9b04111

    71. [71]

      Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560, 345. doi: 10.1038/s41586-018-0397-3  doi: 10.1038/s41586-018-0397-3

    72. [72]

      Wang, J.; Huang, W.; Pei, A.; Li, Y.; Shi, F.; Yu, X.; Cui, Y. Nat. Energy 2019, 4, 664. doi: 10.1038/s41560-019-0413-3  doi: 10.1038/s41560-019-0413-3

    73. [73]

      Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T. J. Res. Natl. Inst. Stand Technol. 1993, 98, 109. doi: 10.6028/jres.098.008  doi: 10.6028/jres.098.008

    74. [74]

      Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    75. [75]

      Lv, S.; Verhallen, T.; Vasileiadis, A.; Ooms, F.; Xu, Y.; Li, Z.; Li, Z.; Wagemaker, M. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-018-04394-3  doi: 10.1038/s41467-018-04394-3

    76. [76]

      Wang, C.; Gong, Y.; Dai, J.; Zhang, L.; Xie, H.; Pastel, G.; Liu, B.; Wachsman, E.; Wang, H.; Hu, L. J. Am. Chem. Soc. 2017, 139, 14257. doi: 10.1021/jacs.7b07904  doi: 10.1021/jacs.7b07904

    77. [77]

      Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X. Nano Energy 2019, 63, 103895. doi: 10.1016/j.nanoen.2019.103895  doi: 10.1016/j.nanoen.2019.103895

    78. [78]

      Zheng, J.; Tang, M.; Hu, Y. Y. Angew. Chem. Int. Ed. 2016, 55, 12538. doi: 10.1002/anie.201607539  doi: 10.1002/anie.201607539

    79. [79]

      Leskes, M.; Drewett, N. E.; Hardwick, L. J.; Bruce, P. G.; Goward, G. R.; Grey, C. P. Angew. Chem. Int. Ed. 2012, 51, 8560. doi: 10.1002/anie.201202183  doi: 10.1002/anie.201202183

    80. [80]

      Leskes, M.; Moore, A. J.; Goward, G. R.; Grey, C. P. J. Phys. Chem. C 2013, 117, 26929. doi: 10.1021/jp410429k  doi: 10.1021/jp410429k

  • 加载中
    1. [1]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    7. [7]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    8. [8]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    9. [9]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    10. [10]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    12. [12]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    19. [19]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    20. [20]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

Metrics
  • PDF Downloads(25)
  • Abstract views(1426)
  • HTML views(489)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return