Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies
- Corresponding author: Zhou Yongning, ynzhou@fudan.edu.cn †These authors contributed equally to this work.
Citation: Yue Xinyang, Ma Cui, Bao Jian, Yang Siyu, Chen Dong, Wu Xiaojing, Zhou Yongning. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200501. doi: 10.3866/PKU.WHXB202005012
Armand, M.; Tarascon, J. Nature 2008, 451, 652. doi: 10.1038/451652a
doi: 10.1038/451652a
Guo, Y.; Li, H.; Zhai, T. Adv. Mater. 2017, 29, 1700007. doi: 10.1002/adma.201700007
doi: 10.1002/adma.201700007
Grande, L.; Paillard, E.; Hassoun, J.; Park, J. U.; Scrosati, B. Adv. Mater. 2014, 27, 784. doi: 10.1002/adma.201403064
doi: 10.1002/adma.201403064
Kolosnitsyn, V. S.; Karaseva, E. V. Russ. J. Electrochem. 2008, 44, 506. doi: 10.1134/s1023193508050029
doi: 10.1134/s1023193508050029
Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/C3EE40795K
doi: 10.1039/C3EE40795K
Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16
doi: 10.1038/nnano.2017.16
Chen, L.; Fan, X.; Ji, X.; Chen, J.; Hou, S.; Wang, C. Joule 2019, 3, 732. doi: 10.1016/j.joule.2018.11.025
doi: 10.1016/j.joule.2018.11.025
Yang, C.; Yin, Y.; Zhang, S.; Li, N.; Guo, Y. Nat. Commun. 2015, 6, 1. doi: 10.1038/ncomms9058
doi: 10.1038/ncomms9058
Duan, H.; Zhang, J.; Chen, X.; Zhang, X.; Li, J.; Huang, L.; Zhang, X.; Shi, J.; Yin, Y.; Zhang, Q. J. Am. Chem. Soc. 2018, 140, 18051. doi: 10.1021/jacs.8b10488
doi: 10.1021/jacs.8b10488
Cheng, X.; Zhang, R.; Zhao, C.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115
doi: 10.1021/acs.chemrev.7b00115
Wang, D.; Zhang, W.; Zheng, W.; Cui, X.; Rojo, T.; Zhang, Q. Adv. Sci. 2017, 4, 1600168. doi: 10.1002/advs.201600168
doi: 10.1002/advs.201600168
Bouchet, R. Nat. Nanotechnol. 2014, 9, 572. doi: 10.1038/nnano.2014.165
doi: 10.1038/nnano.2014.165
Jo, H.; Song, D.; Jeong, Y.; Lee, Y. M.; Ryou, M. J. Power Sources 2019, 409, 132. doi: 10.1016/j.jpowsour.2018.09.059
doi: 10.1016/j.jpowsour.2018.09.059
Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Adv. Funct. Mater. 2018, 28, 1705838. doi: 10.1002/adfm.201705838
doi: 10.1002/adfm.201705838
Zhu, J.; Li, P.; Chen, X.; Legut, D.; Fan, Y.; Zhang, R.; Lu, Y.; Cheng, X.; Zhang, Q. Energy Storage Mater. 2019, 16, 426. doi: 10.1016/j.ensm.2018.06.023
doi: 10.1016/j.ensm.2018.06.023
Zheng, J.; Li, H. Energy Storage Sci. Tech. 2013, 5, 503.
doi: 10.3969/j.issn.2095-4239.2013.05.009
Goodenough, J. B.; Kim, Y. Chem. Mater. 2009, 22, 587. doi: 10.1021/cm901452z
doi: 10.1021/cm901452z
Joho, F.; Rykart, B.; Blome, A.; Novák, P.; Wilhelm, H.; Spahr, M. E. J. Power Sources 2001, 97, 78. doi: 10.1016/S0378-7753(01)00595-X
doi: 10.1016/S0378-7753(01)00595-X
Peled, E. J. Electrochem. Soc. 1979, 126, 2047. doi: 10.1149/1.2128859
doi: 10.1149/1.2128859
Schlaikjer, C. R.; Liang, C. C. J. Electrochem. Soc. 1971, 118, 1447. doi: 10.1149/1.2408351
doi: 10.1149/1.2408351
Peled, E.; Golodnitsky, D.; Ardel, G. J. Electrochem. Soc. 1997, 144, L208. doi: 10.1149/1.1837858
doi: 10.1149/1.1837858
Zhang, Q.; Pan, J.; Lu, P.; Liu, Z.; Verbrugge, M. W.; Sheldon, B. W.; Cheng, Y.; Qi, Y.; Xiao, X. Nano Lett. 2016, 16, 2011. doi: 10.1021/acs.nanolett.5b05283
doi: 10.1021/acs.nanolett.5b05283
Aurbach, D.; Markovsky, B.; Levi, M. D.; Levi, E.; Schechter, A.; Moshkovich, M.; Cohen, Y. J. Power Sources 1999, 81, 95. doi: 10.1016/S0378-7753(99)00187-1
doi: 10.1016/S0378-7753(99)00187-1
Ein-Eli, Y. Electrochem. Solid-State Lett. 1999, 2, 212. doi: 10.1149/1.1390787
doi: 10.1149/1.1390787
Whittingham, M. S. Science 1976, 192, 1126. doi: 10.1126/science.192.4244.1126
doi: 10.1126/science.192.4244.1126
Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M.; Homma, T. J. Electrochem. Soc. 2010, 157, A1212. doi: 10.1149/1.3486468
doi: 10.1149/1.3486468
Ling, C.; Banerjee, D.; Matsui, M. Electrochim. Acta 2012, 76, 270. doi: 10.1016/j.electacta.2012.05.001
doi: 10.1016/j.electacta.2012.05.001
Jäckle, M.; Groß, A. J. Chem. Phys. 2014, 141, 174710. doi: 10.1063/1.4901055
doi: 10.1063/1.4901055
Ely, D. R.; García, R. E. J. Electrochem. Soc. 2013, 160, A662. doi: 10.1149/1.057304jes
doi: 10.1149/1.057304jes
Yan, K.; Lu, Z.; Lee, H.; Xiong, F.; Hsu, P.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi: 10.1038/nenergy.2016.10
doi: 10.1038/nenergy.2016.10
Liu, M.; Kutana, A.; Liu, Y.; Yakobson, B. I. J. Phys. Chem. Lett. 2014, 5, 1225. doi: 10.1021/jz500199d
doi: 10.1021/jz500199d
Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755
doi: 10.1021/acs.nanolett.6b04755
Fleury, V.; Chazalviel, J.; Rosso, M.; Sapoval, B. J. Electroanal. Chem. 1990, 290, 249. doi: 10.1016/0022-0728(90)87434-l
doi: 10.1016/0022-0728(90)87434-l
Chazalviel, J. Phys. Rev. A 1990, 42, 7355. doi: 10.1103/PhysRevA.42.7355
doi: 10.1103/PhysRevA.42.7355
Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J.; Bouchet, R.; Lascaud, S. Electrochim. Acta 2006, 51, 5334. doi: 10.1016/j.electacta.2006.02.004
doi: 10.1016/j.electacta.2006.02.004
Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Energy Environ. Sci. 2016, 9, 3221. doi: 10.1039/c6ee01674j
doi: 10.1039/c6ee01674j
Sacci, R. L.; Dudney, N. J.; More, K. L.; Parent, L. R.; Arslan, I.; Browning, N. D.; Unocic, R. R. Chem. Commun. 2014, 50, 2104. doi: 10.1039/C3CC49029G
doi: 10.1039/C3CC49029G
Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Nano Energy 2017, 32, 271. doi: 10.1016/j.nanoen.2016.12.001
doi: 10.1016/j.nanoen.2016.12.001
Bieker, G.; Winter, M.; Bieker, P. Phys. Chem. Chem. Phys. 2015, 17, 8670. doi: 10.1039/C4CP05865H
doi: 10.1039/C4CP05865H
Wu, B.; Lochala, J.; Taverne, T.; Xiao, J. Nano Energy 2017, 40, 34. doi: 10.1016/j.nanoen.2017.08.005
doi: 10.1016/j.nanoen.2017.08.005
Liu, G.; Lu, W. J. Electrochem. Soc. 2017, 164, A1826. doi: 10.1149/2.0381709jes
doi: 10.1149/2.0381709jes
Chen, L.; Li, X. L.; Zhao, Q.; Cai, W. B.; Jiang, Z. Y. Acta Phys. -Chim. Sin. 2006, 22, 1155.
doi: 10.3866/PKU.WHXB20060924
Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4, 1012. doi: 10.1021/acsenergylett.9b00433
doi: 10.1021/acsenergylett.9b00433
Zou, P.; Wang, Y.; Chiang, S.; Wang, X.; Kang, F.; Yang, C. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-018-02888-8
doi: 10.1038/s41467-018-02888-8
Wang, C.; Appleby, A. J.; Little, F. E. J. Electroanal. Chem. 2002, 519, 9. doi: 10.1016/S0022-0728(01)00708-2
doi: 10.1016/S0022-0728(01)00708-2
Wu, H.; Cui, Y. Nano Today 2012, 7, 414. doi: 10.1016/j.nantod.2012.08.004
doi: 10.1016/j.nantod.2012.08.004
Li, Z.; Huang, J.; Liaw, B. Y.; Metzler, V.; Zhang, J. J. Power Sources 2014, 254, 168. doi: 10.1016/j.jpowsour.2013.12.099
doi: 10.1016/j.jpowsour.2013.12.099
Chen, K.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. J. Mater. Chem. A 2017, 5, 11671. doi: 10.1039/C7TA00371D
doi: 10.1039/C7TA00371D
Gireaud, L.; Grugeon, S.; Laruelle, S.; Yrieix, B.; Tarascon, J. Electrochem. Commun. 2006, 8, 1639. doi: 10.1016/j.elecom.2006.07.037
doi: 10.1016/j.elecom.2006.07.037
Yue, X.; Li, X.; Wang, W.; Chen, D.; Qiu, Q.; Wang, Q.; Wu, X.; Fu, Z.; Shadike, Z.; Yang, X. Nano Energy 2019, 60, 257. doi: 10.1016/j.nanoen.2019.03.057
doi: 10.1016/j.nanoen.2019.03.057
Yue, X.; Bao, J.; Yang, S.; Luo, R.; Wang, Q.; Wu, X.; Shadike, Z.; Yang, X.; Zhou, Y. Nano Energy 2020, 71, 104614. doi: 10.1016/j.nanoen.2020.104614
doi: 10.1016/j.nanoen.2020.104614
Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359, 1513. doi: 10.1126/science.aap8787
doi: 10.1126/science.aap8787
Wu, C.; Huang, H.; Lu, W.; Wei, Z.; Ni, X.; Sun, F.; Qing, P.; Liu, Z.; Ma, J.; Wei, W. Adv. Sci. 2020, 7, 1902643. doi: 10.1002/advs.201902643
doi: 10.1002/advs.201902643
Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/ange.201803003
doi: 10.1002/ange.201803003
Rong, G.; Zhang, X.; Zhao, W.; Qiu, Y.; Liu, M.; Ye, F.; Xu, Y.; Chen, J.; Hou, Y.; Li, W. Adv. Mater. 2017, 29, 1606187. doi: 10.1002/adma.201606187
doi: 10.1002/adma.201606187
Golozar, M.; Hovington, P.; Paolella, A.; Bessette, S.; Lagacé, M.; Bouchard, P.; Demers, H.; Gauvin, R.; Zaghib, K. Nano Lett. 2018, 18, 7583. doi: 10.1021/acs.nanolett.8b03148
doi: 10.1021/acs.nanolett.8b03148
Kim, S. H.; Kim, K.; Choi, H.; Im, D.; Heo, S.; Choi, H. S. J. Mater. Chem. A 2019, 7, 13650. doi: 10.1039/C9TA02614B
doi: 10.1039/C9TA02614B
Hou, C.; Han, J.; Liu, P.; Yang, C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. Adv. Energy Mater. 2019, 9, 1902675. doi: 10.1002/aenm.201902675
doi: 10.1002/aenm.201902675
Liu, B.; Xu, W.; Tao, J.; Yan, P.; Zheng, J.; Engelhard, M. H.; Lu, D.; Wang, C.; Zhang, J. G. Adv. Energy Mater. 2018, 8, 1702340. doi: 10.1002/aenm.201702340
doi: 10.1002/aenm.201702340
Shen, C.; Hu, G.; Cheong, L. Z.; Huang, S.; Zhang, J. G.; Wang, D. Small Methods 2018, 2, 1700298. doi: 10.1002/smtd.201700298
doi: 10.1002/smtd.201700298
Kitta, M.; Sano, H. Langmuir 2017, 33, 1861. doi: 10.1021/acs.langmuir.6b04651
doi: 10.1021/acs.langmuir.6b04651
Zhang, L.; Yang, T.; Du, C.; Liu, Q.; Tang, Y.; Zhao, J.; Wang, B.; Chen, T.; Sun, Y.; Jia, P. Nat. Nanotechnol. 2020, 15, 94. doi: 10.1038/s41565-019-0604-x
doi: 10.1038/s41565-019-0604-x
Sun, F.; Zhou, D.; He, X.; Osenberg, M.; Dong, K.; Chen, L.; Mei, S.; Hilger, A.; Markötter, H.; Lu, Y. ACS Energy Lett. 2020, 5, 152. doi: 10.1021/acsenergylett.9b02424
doi: 10.1021/acsenergylett.9b02424
Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Solid State Ion. 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001
doi: 10.1016/j.ssi.2015.06.001
Shen, X.; Li, Y.; Qian, T.; Liu, J.; Zhou, J.; Yan, C.; Goodenough, J. B. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-08767-0
doi: 10.1038/s41467-019-08767-0
Li, H.; Chao, D.; Chen, B.; Chen, X.; Chuah, C.; Tang, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. J. Am. Chem. Soc. 2020, 142, 2012. doi: 10.1021/jacs.9b11774
doi: 10.1021/jacs.9b11774
Zhang, X.; Zhang, C.; Liu, Z.; Liu, L.; Xia, L. Sci. Tech. Eng. 2019, 19, 9.
Wang, X.; Li, Y.; Meng, Y. S. Joule 2018, 2, 2225. doi: 10.1016/j.joule.2018.10.005
doi: 10.1016/j.joule.2018.10.005
Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.; Joubert, L.; Chin, R.; Koh, A. L.; Yu, Y. Science 2017, 358, 506. doi: 10.1126/science.aam6014
doi: 10.1126/science.aam6014
Xu, Y.; Wu, H.; He, Y.; Chen, Q.; Zhang, J. G.; Xu, W.; Wang, C. Nano Lett. 2020, 20, 418. doi: 10.1021/acs.nanolett.9b04111
doi: 10.1021/acs.nanolett.9b04111
Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560, 345. doi: 10.1038/s41586-018-0397-3
doi: 10.1038/s41586-018-0397-3
Wang, J.; Huang, W.; Pei, A.; Li, Y.; Shi, F.; Yu, X.; Cui, Y. Nat. Energy 2019, 4, 664. doi: 10.1038/s41560-019-0413-3
doi: 10.1038/s41560-019-0413-3
Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T. J. Res. Natl. Inst. Stand Technol. 1993, 98, 109. doi: 10.6028/jres.098.008
doi: 10.6028/jres.098.008
Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z
doi: 10.1038/s41560-018-0312-z
Lv, S.; Verhallen, T.; Vasileiadis, A.; Ooms, F.; Xu, Y.; Li, Z.; Li, Z.; Wagemaker, M. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-018-04394-3
doi: 10.1038/s41467-018-04394-3
Wang, C.; Gong, Y.; Dai, J.; Zhang, L.; Xie, H.; Pastel, G.; Liu, B.; Wachsman, E.; Wang, H.; Hu, L. J. Am. Chem. Soc. 2017, 139, 14257. doi: 10.1021/jacs.7b07904
doi: 10.1021/jacs.7b07904
Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X. Nano Energy 2019, 63, 103895. doi: 10.1016/j.nanoen.2019.103895
doi: 10.1016/j.nanoen.2019.103895
Zheng, J.; Tang, M.; Hu, Y. Y. Angew. Chem. Int. Ed. 2016, 55, 12538. doi: 10.1002/anie.201607539
doi: 10.1002/anie.201607539
Leskes, M.; Drewett, N. E.; Hardwick, L. J.; Bruce, P. G.; Goward, G. R.; Grey, C. P. Angew. Chem. Int. Ed. 2012, 51, 8560. doi: 10.1002/anie.201202183
doi: 10.1002/anie.201202183
Leskes, M.; Moore, A. J.; Goward, G. R.; Grey, C. P. J. Phys. Chem. C 2013, 117, 26929. doi: 10.1021/jp410429k
doi: 10.1021/jp410429k
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Hao Zhao , Zhen Gao , Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122
Zhenjun Mao , Haorui Gu , Haiyan Che , Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013
Congying Wen , Zhengkun Du , Yukun Lu , Zongting Wang , Hua He , Limin Yang , Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089
Dongxue Han , Huiliang Sun , Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057