Citation: Jin-Liang Lin, Yamin Zhang, Hao-Li Zhang. Novel Electrostatic Effects in Single-Molecule Devices[J]. Acta Physico-Chimica Sinica, ;2021, 37(12): 200501. doi: 10.3866/PKU.WHXB202005010 shu

Novel Electrostatic Effects in Single-Molecule Devices

  • Corresponding author: Hao-Li Zhang, Haoli.zhang@lzu.edu.cn
  • Received Date: 5 May 2020
    Revised Date: 4 June 2020
    Accepted Date: 5 June 2020
    Available Online: 16 June 2020

    Fund Project: the National Key R&D Program of China 2017YFA0204903the National Natural Science Foundation of China 51733004the National Natural Science Foundation of China 51525303

  • The past decades have witnessed an increasing interest in molecular electronics aiming to assemble functional circuits using single molecules. Researchers from various disciplines have devoted considerable attention in the design and construction of single-molecule junctions and sophisticated functional devices, accompanied by the discovery and utilization of numerous novel quantum phenomena. Many new breakthroughs benefit from the utilization of various stimulus response methods to tune the charge transport in molecular devices, such as light, temperature, magnetic field, pH, and mechanical force. Electrostatic field has superb but distinct abilities to modulate the charge transport in molecular devices. First, like in other electronic devices, electrostatic fields act on single-molecule devices as a noninvasive means. However, unlike in these traditional electronic devices, the voltage applied in the extremely tiny single-molecule devices would generate a large electrostatic field, which could provide the necessary conditions for regulating charge transport and catalyzing single-molecule-scale chemical reactions. This review focuses on the recent advances made in tuning charge transport by electrostatic field in the single-molecule devices. In the second section, we introduce and compare two break junction techniques commonly used to construct molecular junctions: the scanning tunneling microscopy break junction (STMBJ) technique and the mechanically controllable break junction (MCBJ) technique; furthermore, the three-electrode systems based on these two break junction techniques are also introduced. These techniques laid the foundation for various new techniques in tuning charge transport in molecular junctions based on electrostatic field. In the third section, the applications of electrostatic field are introduced, including controlling the molecular-electrode interfaces, varying molecule configurations and conformations, catalyzing single-molecule-scale chemical reactions, switching molecule spin states, changing molecule redox states and shifting the energy levels of the electrodes and molecules. Finally, we discussed the shortcomings of the applications electrostatic field in single-molecule devices. Including the low stability of single-molecule devices under strong electrostatic field, and the introduction of electrostatic field will increase the difficulty of understanding the charge transport mechanism in single-molecule devices. In addition, we point out that electrostatic field modulation of single-molecule charge transport is expected to be further developed in the following aspects: Firstly, multi-stimulus response molecule devices could be built by combining electrostatic field with other stimulus. Secondly, electrostatic field could be used to catalyze more types of chemical reactions, even control the configurations and conformations of products. Thirdly, electrostatic field can be used to design fullerene-based switching molecular diodes that proper for application in random-access memories and memristors.
  • 加载中
    1. [1]

      Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277. doi: 10.1016/0009-2614(74)85031-1  doi: 10.1016/0009-2614(74)85031-1

    2. [2]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318. doi: 10.1021/acs.chemrev.5b00680  doi: 10.1021/acs.chemrev.5b00680

    3. [3]

      Xin, N.; Guan, J.; Zhou, C.; Chen, X.; Gu, C.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. Nat. Rev. Phys. 2019, 1, 211. doi: 10.1038/s42254-019-0022-x  doi: 10.1038/s42254-019-0022-x

    4. [4]

      Sun, L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Chem. Soc. Rev. 2014, 43, 7378. doi: 10.1039/C4CS00143E  doi: 10.1039/C4CS00143E

    5. [5]

      Gehring, P.; Thijssen, J. M.; van der Zant, H. S. J. Nat. Rev. Phys. 2019, 1, 381. doi: 10.1038/s42254-019-0055-1  doi: 10.1038/s42254-019-0055-1

    6. [6]

      Liu, J. Y.; Zhao, X. T.; Zheng, J. T.; Huang, X. Y.; Tang, Y. Z.; Wang, F.; Li, R. H.; Pi, J. C.; Huang, C. C.; Wang, L.; et al. Chem 2019, 5, 390. doi: 10.1016/j.chempr.2018.11.002  doi: 10.1016/j.chempr.2018.11.002

    7. [7]

      Jia, C.; Ma, B.; Xin, N.; Guo, X. Acc. Chem. Res. 2015, 48, 2565. doi: 10.1021/acs.accounts.5b00133  doi: 10.1021/acs.accounts.5b00133

    8. [8]

      Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571. doi: 10.1126/science.1064354  doi: 10.1126/science.1064354

    9. [9]

      Ho Choi, S.; Kim, B.; Frisbie, C. D. Science 2008, 320, 1482. doi: 10.1126/science.1156538  doi: 10.1126/science.1156538

    10. [10]

      Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Angew. Chem. Int. Ed. 2008, 47, 142. doi: 10.1002/anie.200703642  doi: 10.1002/anie.200703642

    11. [11]

      Liu, J.; Huang, X.; Wang, F.; Hong, W. Acc. Chem. Res. 2019, 52, 151. doi: 10.1021/acs.accounts.8b00429  doi: 10.1021/acs.accounts.8b00429

    12. [12]

      Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; et al. Nature 2018, 558, 415. doi: 10.1038/s41586-018-0197-9  doi: 10.1038/s41586-018-0197-9

    13. [13]

      Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Nat. Nanotechnol. 2017, 12, 1050. doi: 10.1038/nnano.2017.156  doi: 10.1038/nnano.2017.156

    14. [14]

      Fu, B.; Mosquera, M. A.; Schatz, G. C.; Ratner, M. A.; Hsu, L. Y. Nano Lett. 2018, 18, 5015. doi: 10.1021/acs.nanolett.8b01838  doi: 10.1021/acs.nanolett.8b01838

    15. [15]

      Kuang, G.; Chen, S. Z.; Yan, L.; Chen, K. Q.; Shang, X.; Liu, P. N.; Lin, N. J. Am. Chem. Soc. 2018, 140, 570. doi: 10.1021/jacs.7b11016  doi: 10.1021/jacs.7b11016

    16. [16]

      Frisenda, R.; Gaudenzi, R.; Franco, C.; Mas-Torrent, M.; Rovira, C.; Veciana, J.; Alcon, I.; Bromley, S. T.; Burzurí, E.; van der Zant, H. S. J. Nano Lett. 2015, 15, 3109. doi: 10.1021/acs.nanolett.5b00155  doi: 10.1021/acs.nanolett.5b00155

    17. [17]

      Mitchell, A. K.; Pedersen, K. G. L.; Hedegård, P.; Paaske, J. Nat. Commun. 2017, 8, 15210. doi: 10.1038/ncomms15210  doi: 10.1038/ncomms15210

    18. [18]

      Li, Z.; Smeu, M.; Afsari, S.; Xing, Y.; Ratner, M. A.; Borguet, E. Angew. Chem. Int. Ed. 2014, 53, 1098. doi: 10.1002/anie.201308398  doi: 10.1002/anie.201308398

    19. [19]

      Guo, X. Adv. Mater. 2013, 25, 3397. doi: 10.1002/adma.201301219  doi: 10.1002/adma.201301219

    20. [20]

      Reddy, P.; Jang, S. Y.; Segalman, R. A.; Majumdar, A. Science 2007, 315, 1568. doi: 10.1126/science.1137149  doi: 10.1126/science.1137149

    21. [21]

      Rincon-Garcia, L.; Evangeli, C.; Rubio-Bollinger, G.; Agrait, N. Chem. Soc. Rev. 2016, 45, 4285. doi: 10.1039/c6cs00141f  doi: 10.1039/c6cs00141f

    22. [22]

      Capozzi, B.; Xia, J.; Adak, O.; Dell, E. J.; Liu, Z. F.; Taylor, J. C.; Neaton, J. B.; Campos, L. M.; Venkataraman, L. Nat. Nanotechnol. 2015, 10, 522. doi: 10.1038/nnano.2015.97  doi: 10.1038/nnano.2015.97

    23. [23]

      Hayakawa, R.; Karimi, M. A.; Wolf, J.; Huhn, T.; Zöllner, M. S.; Herrmann, C.; Scheer, E. Nano Lett. 2016, 16, 4960. doi: 10.1021/acs.nanolett.6b01595  doi: 10.1021/acs.nanolett.6b01595

    24. [24]

      Zhou, J.; Wang, K.; Xu, B.; Dubi, Y. J. Am. Chem. Soc. 2018, 140, 70. doi: 10.1021/jacs.7b10479  doi: 10.1021/jacs.7b10479

    25. [25]

      Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Nat. Nanotechnol. 2009, 4, 230. doi: 10.1038/nnano.2009.10  doi: 10.1038/nnano.2009.10

    26. [26]

      Bruot, C.; Hihath, J.; Tao, N. Nat. Nanotechnol. 2012, 7, 35. doi: 10.1038/nnano.2011.212  doi: 10.1038/nnano.2011.212

    27. [27]

      Yang, G.; Sangtarash, S.; Liu, Z.; Li, X.; Sadeghi, H.; Tan, Z.; Li, R.; Zheng, J.; Dong, X.; Liu, J.; et al. Chem. Sci. 2017, 8, 7505. doi: 10.1039/c7sc01014a  doi: 10.1039/c7sc01014a

    28. [28]

      Liang, W.; Shores, M. P.; Bockrath, M.; Long, J. R.; Park, H. Nature 2002, 417, 725. doi: 10.1038/nature00790  doi: 10.1038/nature00790

    29. [29]

      Park, J.; Pasupathy, A. N.; Goldsmith, J. I.; Chang, C.; Yaish, Y.; Petta, J. R.; Rinkoski, M.; Sethna, J. P.; Abruña, H. D.; McEuen, P. L.; et al. Nature 2002, 417, 722. doi: 10.1038/nature00791  doi: 10.1038/nature00791

    30. [30]

      Banholzer, M. J.; Qin, L.; Millstone, J. E.; Osberg, K. D.; Mirkin, C. A. Nat. Protoc. 2009, 4, 838. doi: 10.1038/nprot.2009.52  doi: 10.1038/nprot.2009.52

    31. [31]

      Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309, 113. doi: 10.1126/science.1112666  doi: 10.1126/science.1112666

    32. [32]

      Ai, Y.; Zhang, H. L. Acta Phys. -Chim. Sin. 2012, 28, 2237.  doi: 10.3866/PKU.WHXB201209102

    33. [33]

      Cheng, P.; Li, Y.; Chang, S. Acta Phys. -Chim. Sin. 2020, 36, 19090430.  doi: 10.3866/PKU.WHXB201909043

    34. [34]

      Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W. Acta Phys. -Chim. Sin. 2019, 35, 829.  doi: 10.3866/PKU.WHXB201811027

    35. [35]

      Reed, M. A. Science 1997, 278, 252. doi: 10.1126/science.278.5336.252  doi: 10.1126/science.278.5336.252

    36. [36]

      Xiang, D.; Jeong, H.; Lee, T.; Mayer, D. Adv. Mater. 2013, 25, 4845. doi: 10.1002/adma.201301589  doi: 10.1002/adma.201301589

    37. [37]

      Xu, B.; Tao, N. J. Science 2003, 301, 1221. doi: 10.1126/science.1087481  doi: 10.1126/science.1087481

    38. [38]

      Afsari, S.; Yasini, P.; Peng, H.; Perdew, J. P.; Borguet, E. Angew. Chem. Int. Ed. 2019, 58, 14275. doi: 10.1002/anie.201903898  doi: 10.1002/anie.201903898

    39. [39]

      Tian, J. H.; Liu, B.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128, 14748. doi: 10.1021/ja0648615  doi: 10.1021/ja0648615

    40. [40]

      Huang, C.; Rudnev, A. V.; Hong, W.; Wandlowski, T. Chem. Soc. Rev. 2015, 44, 889. doi: 10.1039/c4cs00242c  doi: 10.1039/c4cs00242c

    41. [41]

      Jia, C.; Guo, X. Chem. Soc. Rev. 2013, 42, 5642. doi: 10.1039/c3cs35527f  doi: 10.1039/c3cs35527f

    42. [42]

      Zheng, J.; Liu, J.; Zhuo, Y.; Li, R.; Jin, X.; Yang, Y.; Chen, Z. B.; Shi, J.; Xiao, Z.; Hong, W.; et al. Chem. Sci. 2018, 9, 5033. doi: 10.1039/C8SC00727F  doi: 10.1039/C8SC00727F

    43. [43]

      Zang, Y.; Pinkard, A.; Liu, Z. F.; Neaton, J. B.; Steigerwald, M. L.; Roy, X.; Venkataraman, L. J. Am. Chem. Soc. 2017, 139, 14845. doi: 10.1021/jacs.7b08370  doi: 10.1021/jacs.7b08370

    44. [44]

      Doud, E. A.; Inkpen, M. S.; Lovat, G.; Montes, E.; Paley, D. W.; Steigerwald, M. L.; Vázquez, H.; Venkataraman, L.; Roy, X. J. Am. Chem. Soc. 2018, 140, 8944. doi: 10.1021/jacs.8b05184  doi: 10.1021/jacs.8b05184

    45. [45]

      Cheng, Z. L.; Skouta, R.; Vazquez, H.; Widawsky, J. R.; Schneebeli, S.; Chen, W.; Hybertsen, M. S.; Breslow, R.; Venkataraman, L. Nat. Nanotechnol. 2011, 6, 353. doi: 10.1038/nnano.2011.66  doi: 10.1038/nnano.2011.66

    46. [46]

      Bejarano, F.; Olavarria-Contreras, I. J.; Droghetti, A.; Rungger, I.; Rudnev, A.; Gutiérrez, D.; Mas-Torrent, M.; Veciana, J.; van der Zant, H. S. J.; Rovira, C.; et al. J. Am. Chem. Soc. 2018, 140, 1691. doi: 10.1021/jacs.7b10019  doi: 10.1021/jacs.7b10019

    47. [47]

      Hong, W.; Li, H.; Liu, S. X.; Fu, Y.; Li, J.; Kaliginedi, V.; Decurtins, S.; Wandlowski, T. J. Am. Chem. Soc. 2012, 134, 19425. doi: 10.1021/ja307544w  doi: 10.1021/ja307544w

    48. [48]

      Batra, A.; Kladnik, G.; Gorjizadeh, N.; Meisner, J.; Steigerwald, M.; Nuckolls, C.; Quek, S. Y.; Cvetko, D.; Morgante, A.; Venkataraman, L. J. Am. Chem. Soc. 2014, 136, 12556. doi: 10.1021/ja5061406  doi: 10.1021/ja5061406

    49. [49]

      Hines, T.; Díez-Pérez, I.; Nakamura, H.; Shimazaki, T.; Asai, Y.; Tao, N. J. Am. Chem. Soc. 2013, 135, 3319. doi: 10.1021/ja3106434  doi: 10.1021/ja3106434

    50. [50]

      Peiris, C. R.; Vogel, Y. B.; Le Brun, A. P.; Aragonès, A. C.; Coote, M. L.; Díez-Pérez, I.; Ciampi, S.; Darwish, N. J. Am. Chem. Soc. 2019, 141, 14788. doi: 10.1021/jacs.9b07125  doi: 10.1021/jacs.9b07125

    51. [51]

      Starr, R. L.; Fu, T.; Doud, E. A.; Stone, I.; Roy, X.; Venkataraman, L. J. Am. Chem. Soc. 2020, 142, 15, 7128. doi: 10.1021/jacs.0c01466  doi: 10.1021/jacs.0c01466

    52. [52]

      Gerhard, L.; Edelmann, K.; Homberg, J.; Valasek, M.; Bahoosh, S. G.; Lukas, M.; Pauly, F.; Mayor, M.; Wulfhekel, W. Nat. Commun. 2017, 8, 14672. doi: 10.1038/ncomms14672  doi: 10.1038/ncomms14672

    53. [53]

      Yasini, P.; Afsari, S.; Peng, H.; Pikma, P.; Perdew, J. P.; Borguet, E. J. Am. Chem. Soc. 2019, 141, 10109. doi: 10.1021/jacs.9b05448  doi: 10.1021/jacs.9b05448

    54. [54]

      Xiang, L.; Zhang, P.; Liu, C.; He, X.; Li, H. B.; Li, Y.; Wang, Z.; Hihath, J.; Kim, S. H.; Beratan, D. N.; et al. Matter 2020, 3, 166. doi: 10.1016/j.matt.2020.03.023  doi: 10.1016/j.matt.2020.03.023

    55. [55]

      Brooke, R. J.; Szumski, D. S.; Vezzoli, A.; Higgins, S. J.; Nichols, R. J.; Schwarzacher, W. Nano Lett. 2018, 18, 1317. doi: 10.1021/acs.nanolett.7b04995  doi: 10.1021/acs.nanolett.7b04995

    56. [56]

      Tang, C.; Zheng, J.; Ye, Y.; Liu, J.; Chen, L.; Yan, Z.; Chen, Z.; Chen, L.; Huang, X.; Bai, J.; et al. iScience 2020, 23, 100770. doi: 10.1016/j.isci.2019.100770  doi: 10.1016/j.isci.2019.100770

    57. [57]

      Zhang, Y. P.; Chen, L. C.; Zhang, Z. Q.; Cao, J. J.; Tang, C.; Liu, J.; Duan, L. L.; Huo, Y.; Shao, X.; Hong, W.; et al. J. Am. Chem. Soc. 2018, 140, 6531. doi: 10.1021/jacs.8b02825  doi: 10.1021/jacs.8b02825

    58. [58]

      Zang, Y.; Zou, Q.; Fu, T.; Ng, F.; Fowler, B.; Yang, J.; Li, H.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Nat. Commun. 2019, 10, 4482. doi: 10.1038/s41467-019-12487-w  doi: 10.1038/s41467-019-12487-w

    59. [59]

      Jan van der Molen, S.; Liljeroth, P. J. Phys. : Condens. Matter 2010, 22, 133001. doi: 10.1088/0953-8984/22/13/133001  doi: 10.1088/0953-8984/22/13/133001

    60. [60]

      Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K. H.; Moresco, F.; Grill, L. J. Am. Chem. Soc. 2006, 128, 14446. doi: 10.1021/ja065449s  doi: 10.1021/ja065449s

    61. [61]

      Meng, L.; Xin, N.; Hu, C.; Wang, J.; Gui, B.; Shi, J.; Wang, C.; Shen, C.; Zhang, G.; Guo, H.; et al. Nat. Commun. 2019, 10, 1450. doi: 10.1038/s41467-019-09120-1  doi: 10.1038/s41467-019-09120-1

    62. [62]

      Li, H. B.; Tebikachew, B. E.; Wiberg, C.; Moth-Poulsen, K.; Hihath, J. Angew. Chem. Int. Ed. 2020, 59, 2. doi: 10.1002/anie.202002300  doi: 10.1002/anie.202002300

    63. [63]

      Xin, N.; Wang, J.; Jia, C.; Liu, Z.; Zhang, X.; Yu, C.; Li, M.; Wang, S.; Gong, Y.; Sun, H.; et al. Nano Lett. 2017, 17, 856. doi: 10.1021/acs.nanolett.6b04139  doi: 10.1021/acs.nanolett.6b04139

    64. [64]

      Vonlanthen, D.; Mishchenko, A.; Elbing, M.; Neuburger, M.; Wandlowski, T.; Mayor, M. Angew. Chem. Int. Ed. 2009, 48, 8886. doi: 10.1002/anie.200903946  doi: 10.1002/anie.200903946

    65. [65]

      Wang, L. J.; Yong, A.; Zhou, K. G.; Tan, L.; Ye, J.; Wu, G. P.; Xu, Z. G.; Zhang, H. L. Chem. -Asian J. 2013, 8, 1901. doi: 10.1002/asia.201300264  doi: 10.1002/asia.201300264

    66. [66]

      Bi, H.; Palma, C. A.; Gong, Y.; Hasch, P.; Elbing, M.; Mayor, M.; Reichert, J.; Barth, J. V. J. Am. Chem. Soc. 2018, 140, 4835. doi: 10.1021/jacs.7b12818  doi: 10.1021/jacs.7b12818

    67. [67]

      Schwarz, F.; Kastlunger, G.; Lissel, F.; Egler-Lucas, C.; Semenov, S. N.; Venkatesan, K.; Berke, H.; Stadler, R.; Lortscher, E. Nat. Nanotechnol. 2016, 11, 170. doi: 10.1038/nnano.2015.255  doi: 10.1038/nnano.2015.255

    68. [68]

      Yasuraoka, K.; Kaneko, S.; Fujii, S.; Nishino, T.; Tsukagoshi, K.; Juhasz, G.; Kiguchi, M. J. Phys. Chem. C 2019, 123, 15267. doi: 10.1021/acs.jpcc.9b02286  doi: 10.1021/acs.jpcc.9b02286

    69. [69]

      Kaneko, S.; Yasuraoka, K.; Kiguchi, M. J. Phys. Chem. C 2019, 123, 6502. doi: 10.1021/acs.jpcc.8b11595  doi: 10.1021/acs.jpcc.8b11595

    70. [70]

      Olavarria-Contreras, I. J.; Etcheverry-Berrios, A.; Qian, W.; Gutierrez-Ceron, C.; Campos-Olguin, A.; Sanudo, E. C.; Dulic, D.; Ruiz, E.; Aliaga-Alcalde, N.; Soler, M.; et al. Chem. Sci. 2018, 9, 6988. doi: 10.1039/c8sc02337a  doi: 10.1039/c8sc02337a

    71. [71]

      Meir, R.; Chen, H.; Lai, W.; Shaik, S. ChemPhysChem 2010, 11, 301. doi: 10.1002/cphc.200900848  doi: 10.1002/cphc.200900848

    72. [72]

      Haiss, W.; Nichols, R. J.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Schiffrin, D. J. Phys. Chem. Chem. Phys. 2004, 6, 4330. doi: 10.1039/b404929b  doi: 10.1039/b404929b

    73. [73]

      Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Nature 2016, 531, 88. doi: 10.1038/nature16989  doi: 10.1038/nature16989

    74. [74]

      Huang, X.; Tang, C.; Li, J.; Chen, L. C.; Zheng, J.; Zhang, P.; Le, J.; Li, R.; Li, X.; Liu, J.; et al. Sci. Adv. 2019, 5, eaaw3072. doi: 10.1126/sciadv.aaw3072  doi: 10.1126/sciadv.aaw3072

    75. [75]

      Zang, Y.; Stone, I.; Inkpen, M. S.; Ng, F.; Lambert, T. H.; Nuckolls, C.; Steigerwald, M. L.; Roy, X.; Venkataraman, L. Angew. Chem. Int. Ed. 2019, 58, 16008. doi: 10.1002/anie.201906215  doi: 10.1002/anie.201906215

    76. [76]

      Zhang, L.; Laborda, E.; Darwish, N.; Noble, B. B.; Tyrell, J. H.; Pluczyk, S.; Le Brun, A. P.; Wallace, G. G.; Gonzalez, J.; Coote, M. L.; et al. J. Am. Chem. Soc. 2018, 140, 766. doi: 10.1021/jacs.7b11628  doi: 10.1021/jacs.7b11628

    77. [77]

      Ciampi, S.; Darwish, N.; Aitken, H. M.; Diez-Perez, I.; Coote, M. L. Chem. Soc. Rev. 2018, 47, 5146. doi: 10.1039/c8cs00352a  doi: 10.1039/c8cs00352a

    78. [78]

      Li, H.; Kim, N. T.; Su, T. A.; Steigerwald, M. L.; Nuckolls, C.; Darancet, P.; Leighton, J. L.; Venkataraman, L. J. Am. Chem. Soc. 2016, 138, 16159. doi: 10.1021/jacs.6b10700  doi: 10.1021/jacs.6b10700

    79. [79]

      Aravena, D.; Ruiz, E. J. Am. Chem. Soc. 2012, 134, 777. doi: 10.1021/ja2090096  doi: 10.1021/ja2090096

    80. [80]

      Miyamachi, T.; Gruber, M.; Davesne, V.; Bowen, M.; Boukari, S.; Joly, L.; Scheurer, F.; Rogez, G.; Yamada, T. K.; Ohresser, P.; et al. Nat. Commun. 2012, 3, 938. doi: 10.1038/ncomms1940  doi: 10.1038/ncomms1940

    81. [81]

      Wagner, S.; Kisslinger, F.; Ballmann, S.; Schramm, F.; Chandrasekar, R.; Bodenstein, T.; Fuhr, O.; Secker, D.; Fink, K.; Ruben, M.; et al. Nat. Nanotechnol. 2013, 8, 575. doi: 10.1038/nnano.2013.133  doi: 10.1038/nnano.2013.133

    82. [82]

      Frisenda, R.; Harzmann, G. D.; Celis Gil, J. A.; Thijssen, J. M.; Mayor, M.; van der Zant, H. S. Nano Lett. 2016, 16, 4733. doi: 10.1021/acs.nanolett.5b04899  doi: 10.1021/acs.nanolett.5b04899

    83. [83]

      Harzmann, G. D.; Frisenda, R.; van der Zant, H. S.; Mayor, M. Angew. Chem. Int. Ed. 2015, 54, 13425. doi: 10.1002/anie.201505447  doi: 10.1002/anie.201505447

    84. [84]

      Xiao, X.; Brune, D.; He, J.; Lindsay, S.; Gorman, C. B.; Tao, N. Chem. Phys. 2006, 326, 138. doi: 10.1016/j.chemphys.2006.02.022  doi: 10.1016/j.chemphys.2006.02.022

    85. [85]

      Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Höbenreich, H.; Schiffrin, D. J.; Nichols, R. J. J. Am. Chem. Soc. 2003, 125, 15294. doi: 10.1021/ja038214e  doi: 10.1021/ja038214e

    86. [86]

      Haiss, W.; Albrecht, T.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Höbenreich, H.; Schiffrin, D. J.; Nichols, R. J.; Kuznetsov, A. M.; Zhang, J.; et al. J. Phys. Chem. B 2007, 111, 6703. doi: 10.1021/jp068692m  doi: 10.1021/jp068692m

    87. [87]

      Kay, N. J.; Higgins, S. J.; Jeppesen, J. O.; Leary, E.; Lycoops, J.; Ulstrup, J.; Nichols, R. J. J. Am. Chem. Soc. 2012, 134, 16817. doi: 10.1021/ja307407e  doi: 10.1021/ja307407e

    88. [88]

      Wang, G.; Zeng, B. F.; Zhao, S. Q.; Qian, Q. Z.; Hong, W.; Yang, Y. Sci. China Chem. 2019, 62, 1333. doi: 10.1007/s11426-019-9523-x  doi: 10.1007/s11426-019-9523-x

    89. [89]

      Ke, G.; Duan, C.; Huang, F.; Guo, X. InfoMat 2019, 2, 92. doi: 10.1002/inf2.12068  doi: 10.1002/inf2.12068

    90. [90]

      Yin, X.; Zang, Y.; Zhu, L.; Low, J. Z.; Liu, Z. F.; Cui, J.; Neaton, J. B.; Venkataraman, L.; Campos, L. M. Sci. Adv. 2017, 3, eaao2615. doi: 10.1126/sciadv.aao2615  doi: 10.1126/sciadv.aao2615

    91. [91]

      Li, Y.; Baghernejad, M.; Qusiy, A. G.; Zsolt Manrique, D.; Zhang, G.; Hamill, J.; Fu, Y.; Broekmann, P.; Hong, W.; Wandlowski, T.; et al. Angew. Chem. Int. Ed. 2015, 54, 13586. doi: 10.1002/anie.201506458  doi: 10.1002/anie.201506458

    92. [92]

      Wu, C.; Qiao, X.; Robertson, C. M.; Higgins, S. J.; Cai, C.; Nichols, R. J.; Vezzoli, A. Angew. Chem. Int. Ed. 2020, 59, 12029. doi: 10.1002/anie.202002174  doi: 10.1002/anie.202002174

    93. [93]

      Liu, J.; Huang, X.; Wang, F.; Hong, W. Acc. Chem. Res. 2019, 52, 151. doi: 10.1021/acs.accounts.8b00429  doi: 10.1021/acs.accounts.8b00429

    94. [94]

      Lambert, C. J. Chem. Soc. Rev. 2015, 44, 875. doi: 10.1039/C4CS00203B  doi: 10.1039/C4CS00203B

    95. [95]

      Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.; Chiechi, R. C. J. Am. Chem. Soc. 2011, 133, 9556. doi: 10.1021/ja202471m  doi: 10.1021/ja202471m

    96. [96]

      Darwish, N.; Diez-Perez, I.; Da Silva, P.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. Angew. Chem. Int. Ed. 2012, 51, 3203. doi: 10.1002/anie.201107765  doi: 10.1002/anie.201107765

    97. [97]

      Baghernejad, M.; Zhao, X.; Baruël Ørnsø, K.; Füeg, M.; Moreno-García, P.; Rudnev, A. V.; Kaliginedi, V.; Vesztergom, S.; Huang, C.; Hong, W.; et al. J. Am. Chem. Soc. 2014, 136, 17922. doi: 10.1021/ja510335z  doi: 10.1021/ja510335z

    98. [98]

      Xiang, L.; Palma, J. L.; Li, Y.; Mujica, V.; Ratner, M. A.; Tao, N. Nat. Commun. 2017, 8, 14471. doi: 10.1038/ncomms14471  doi: 10.1038/ncomms14471

    99. [99]

      Li, Y.; Wang, H.; Wang, Z.; Qiao, Y.; Ulstrup, J.; Chen, H. Y.; Zhou, G.; Tao, N. Proc. Natl. Acad. Sci. USA 2019, 116, 3407. doi: 10.1073/pnas.1814825116  doi: 10.1073/pnas.1814825116

    100. [100]

      Li, X.; Xu, B.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. Faraday Discuss. 2006, 131, 111. doi: 10.1039/b505666g  doi: 10.1039/b505666g

    101. [101]

      Díez-Pérez, I.; Li, Z.; Guo, S.; Madden, C.; Huang, H.; Che, Y.; Yang, X.; Zang, L.; Tao, N. ACS Nano 2012, 6, 7044. doi: 10.1021/nn302090t  doi: 10.1021/nn302090t

    102. [102]

      Xin, N.; Li, X.; Jia, C.; Gong, Y.; Li, M.; Wang, S.; Zhang, G.; Yang, J.; Guo, X. Angew. Chem. Int. Ed. 2018, 57, 14026. doi: 10.1002/anie.201807465  doi: 10.1002/anie.201807465

    103. [103]

      Zhang, B.; Song, W.; Brown, J.; Nemanich, R.; Lindsay, S. J. Am. Chem. Soc. 2020, 142, 6432. doi: 10.1021/jacs.0c01805  doi: 10.1021/jacs.0c01805

    104. [104]

      Xiang, D.; Jeong, H.; Kim, D.; Lee, T.; Cheng, Y.; Wang, Q.; Mayer, D. Nano Lett. 2013, 13, 2809. doi: 10.1021/nl401067x  doi: 10.1021/nl401067x

    105. [105]

      Guo, C.; Chen, X.; Ding, S. Y.; Mayer, D.; Wang, Q.; Zhao, Z.; Ni, L.; Liu, H.; Lee, T.; Xu, B.; et al. ACS Nano 2018, 12, 11229. doi: 10.1021/acsnano.8b05826  doi: 10.1021/acsnano.8b05826

    106. [106]

      Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X.; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; et al. Nat. Mater. 2019, 18, 364. doi: 10.1038/s41563-018-0265-4  doi: 10.1038/s41563-018-0265-4

    107. [107]

      Li, Y.; Buerkle, M.; Li, G.; Rostamian, A.; Wang, H.; Wang, Z.; Bowler, D. R.; Miyazaki, T.; Xiang, L.; Asai, Y.; et al. Nat. Mater 2019, 18, 357. doi: 10.1038/s41563-018-0280-5  doi: 10.1038/s41563-018-0280-5

    108. [108]

      Huang, B.; Liu, X.; Yuan, Y.; Hong, Z. W.; Zheng, J. F.; Pei, L. Q.; Shao, Y.; Li, J. F.; Zhou, X. S.; Chen, J. Z.; et al. J. Am. Chem. Soc. 2018, 140, 17685. doi: 10.1021/jacs.8b10450  doi: 10.1021/jacs.8b10450

    109. [109]

      Gehring, P.; Harzheim, A.; Spièce, J.; Sheng, Y.; Rogers, G.; Evangeli, C.; Mishra, A.; Robinson, B. J.; Porfyrakis, K.; Warner, J. H.; et al. Nano Lett. 2017, 17, 7055. doi: 10.1021/acs.nanolett.7b03736  doi: 10.1021/acs.nanolett.7b03736

    110. [110]

      Li, H.; Su, T. A.; Zhang, V.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2015, 137, 5028. doi: 10.1021/ja512523r  doi: 10.1021/ja512523r

    111. [111]

      Jaroš, A.; Bonab, E. F.; Straka, M.; Foroutan-Nejad, C. J. Am. Chem. Soc. 2019, 141, 19644. doi: 10.1021/jacs.9b07215  doi: 10.1021/jacs.9b07215

  • 加载中
    1. [1]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    6. [6]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    7. [7]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    12. [12]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    13. [13]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    14. [14]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    17. [17]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    18. [18]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(6)
  • Abstract views(235)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return