Citation: Xiaoqing Yang, Hualin Yang, Huan Lu, Haoxuan Ding, Yanxin Tong, Fei Rao, Xin Zhang, Qian Shen, Jianzhi Gao, Gangqiang Zhu. 2D/2D Ti3C2/Bi4O5Br2 Nanosheet Heterojunction with Enhanced Visible Light Photocatalytic Activity for NO Removal[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200500. doi: 10.3866/PKU.WHXB202005008 shu

2D/2D Ti3C2/Bi4O5Br2 Nanosheet Heterojunction with Enhanced Visible Light Photocatalytic Activity for NO Removal

  • Corresponding author: Huan Lu, huanlu@snnu.edu.cn Qian Shen, iamqshen@njtech.edu.cn Jianzhi Gao, jianzhigao@snnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 5 May 2020
    Revised Date: 4 June 2020
    Accepted Date: 5 June 2020
    Available Online: 15 June 2020

    Fund Project: the National Natural Science Foundation of China 21972083the National Natural Science Foundation of China 21673118the National Natural Science Foundation of China 21972067the National Natural Science Foundation of China 11574189the National Natural Science Foundation of China 11604196the Science and Technology Program of Shaanxi Province, China 2019JM-102the Science and Technology Program of Shaanxi Province, China 2016KJXX-15the Fundamental Research Funds for the Central Universities, China GK201801005the Fundamental Research Funds for the Central Universities, China GK201602006the Fundamental Research Funds for the Central Universities, China 2018CBLZ002

  • This study concentrated on the production of a two-dimensional and two-dimensional (2D/2D) Ti3C2/Bi4O5Br2 heterojunction with a large interface that applied as one of the novel visible-light-induced photocatalyst via the hydrothermal method. The obtained photocatalysts enhanced the photocatalytic efficiency of the NO removal. The crystal structure and chemical state of the composites were characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results showed that Ti3C2, Bi4O5Br2, and Ti3C2/Bi4O5Br2 were successfully synthesized. The experimental results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the prepared samples had a 2D/2D nanosheet structure and large contact area. This structure facilitated the transfer of electrons and holes. The solar light absorptions of the samples were evaluated using the UV-Vis diffuse reflectance spectra (UV-Vis DRS). It was found that the absorption band of Ti3C2/Bi4O5Br2 was wider than that of Bi4O5Br2. This represents the electrons in the Ti3C2/Bi4O5Br2 nanosheet composites were more likely to be excited. The photocatalytic experiments showed that the 2D/2D Ti3C2/Bi4O5Br2 composite with high photocatalytic activity and stability. The photocatalytic efficiency of pure Bi4O5Br2 for the NO removal was 30.5%, while for the 15%Ti3C2/Bi4O5Br2 it was 57.6%. Moreover, the catalytic reaction happened in a short period. The concentration of NO decreased exponentially in the first 5 min, which approximately reached the final value. Furthermore, the stability of 15%Ti3C2/Bi4O5Br2 was favorable: the catalytic rate was approximately 50.0% after five cycles of cyclic catalysis. Finally, the scavenger experiments, electron spin resonance spectroscopy (ESR), transient photocurrent response, and surface photovoltage spectrum (SPS) were applied to analyze the photocatalytic mechanism of the composite. The results indicated that the 2D/2D heterojunction Ti3C2/Bi4O5Br2 improved the separation rate of the electrons and holes, thus enhancing the photocatalytic efficiency. In the photocatalytic reactions, the photogenerated electrons (e) and superoxide radical (·O2) were critical active groups that had a significant role in the oxidative removal of NO. The in situ Fourier-transform infrared spectroscopy (in situ FTIR) showed that the photo-oxidation products were mainly NO2 and NO3. Based on the above experimental results, a possible photocatalytic mechanism was proposed. The electrons in Bi4O5Br2 were excited by visible light. They jumped from the valence band (VB) of Bi4O5Br2 to the conduction band (CB). Then, the photoelectrons transferred from the CB of Bi4O5Br2 to the Ti3C2 surface, which significantly promoted the separation of the electron-hole pairs. Therefore, the photocatalytic efficiency of Ti3C2/Bi4O5Br2 on NO was significantly improved. This study provided an effective method for preparing 2D/2D Ti3C2/Bi4O5Br2 nanocomposites for the photocatalytic degradation of environmental pollutants, which has great potential in solving energy stress and environmental pollution.
  • 加载中
    1. [1]

      Fan, W. G.; Chan, K. Y.; Zhang, C. X.; Zhang, K.; Ning, Z.; Leung, M. K. H. Appl. Energy 2018, 225, 535. doi: 10.1016/j.apenergy.2018.04.134  doi: 10.1016/j.apenergy.2018.04.134

    2. [2]

      Jia, Y. F.; Li, S. P.; Gao, J. Z.; Zhu, G. Q.; Zhang, F. C.; Shi, X. J.; Huang, Y.; Liu, C. L. Appl. Catal. B 2019, 240, 241. doi: 10.1016/j.apcatb.2018.09.005  doi: 10.1016/j.apcatb.2018.09.005

    3. [3]

      Peng, M. Q.; Zhao, R.; Xia, M.; Li, C. J.; Gong, X. L.; Wang, D.; Xia, D. S. Fuel 2017, 200, 290. doi: 10.1016/j.fuel.2017.03.062  doi: 10.1016/j.fuel.2017.03.062

    4. [4]

      Wang, T.; Liu, H. Z.; Zhang, X. Y.; Guo, Y. H.; Zhang, Y. S.; Wang, Y.; Sun, B. M. Fuel Process. Technol. 2017, 158, 199. doi: 10.1016/j.fuproc.2017.01.011  doi: 10.1016/j.fuproc.2017.01.011

    5. [5]

      Liu, Z. M.; Zhu, J. Z.; Li, J. H.; Ma, L. L.; Woo, S. I. ACS Appl. Mater. Interfaces 2014, 6 (16), 14500. doi: 10.1021/am5038164  doi: 10.1021/am5038164

    6. [6]

      Boubnov, A.; Carvalho, H. W. P.; Doronkin, D. E.; Gunter, T.; Gallo, E.; Atkins, A. J.; Jacob, C. R.; Grunwaldt, J. D. J. Am. Chem. Soc. 2014, 136 (37), 13006. doi: 10.1021/ja5062505  doi: 10.1021/ja5062505

    7. [7]

      Hu, J. D.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Appl. Catal. B 2017, 217, 224. doi: 10.1016/j.apcatb.2017.05.088  doi: 10.1016/j.apcatb.2017.05.088

    8. [8]

      Dong, G. H.; Ho, W. K.; Zhang, L. Z. Appl. Catal. B 2015, 168–169, 490. doi: 10.1016/j.apcatb.2015.01.014  doi: 10.1016/j.apcatb.2015.01.014

    9. [9]

      Jin, S.; Dong, G. H.; Luo, J. M.; Ma, F. Y.; Wang, C. Y. Appl. Catal. B 2018, 227, 24. doi: 10.1016/j.apcatb.2018.01.020  doi: 10.1016/j.apcatb.2018.01.020

    10. [10]

      Yang, X. Y.; Cao, X. J.; Tang, B. M.; Shan, B. L.; Deng, M.; Liu, Y. G. J. Photochem. Photobiol. A 2019, 375, 40. doi: 10.1016/j.jphotochem.2019.02.011  doi: 10.1016/j.jphotochem.2019.02.011

    11. [11]

      Wang, H.; Sun, Y. J.; Jiang, G. M.; Zhang, Y. X.; Huang, H. W.; Wu, Z. B.; Lee, S. C.; Dong, F. Environ. Sci. Technol. 2018, 52 (3), 1479. doi: 10.1021/acs.est.7b05457  doi: 10.1021/acs.est.7b05457

    12. [12]

      Jia, Y. F.; Li, S. P.; Ma, H. X.; Gao, J. Z.; Zhu, G. Q.; Zhang, F. C.; Park, J. Y.; Cha, S. W.; Bae, J. S.; Liu, C. L. J. Hazard. Mater. 2020, 382, 121121. doi: 10.1016/j.jhazmat.2019.121121  doi: 10.1016/j.jhazmat.2019.121121

    13. [13]

      Wang, J. J.; Tang, L.; Zeng, G. M.; Deng, Y. C.; Liu, Y. N.; Wang, L. L.; Zhou, Y. Y.; Guo, Z.; Wang, J. J.; Zhang, C. Appl. Catal. B 2017, 209, 285. doi: 10.1016/j.apcatb.2017.03.019  doi: 10.1016/j.apcatb.2017.03.019

    14. [14]

      Sun, Z. C.; Yu, Z. Q.; Liu, Y. Y.; Shi, C.; Zhu, M. S.; Wang, A. J. J. Colloid Interface Sci. 2019, 533, 251. doi: 10.1016/j.jcis.2018.08.071  doi: 10.1016/j.jcis.2018.08.071

    15. [15]

      Wang, Q.; Wang, W.; Zhong, L. L.; Liu, D. M.; Cao, X. Z.; Cui, F. Y. Appl. Catal. B 2018, 220, 290. doi: 10.1016/j.apcatb.2017.08.049  doi: 10.1016/j.apcatb.2017.08.049

    16. [16]

      Chen, Y.; Jia, G.; Hu, Y. F.; Fan, G. Z.; Tsang, Y. H.; Li, Z. S.; Zou, Z. G. Sustain. Energy Fuels 2017, 1 (9), 1875. doi: 10.1039/c7se00344g  doi: 10.1039/c7se00344g

    17. [17]

      Zhang, Z. Y.; Huang, J. D.; Zhang, M. Y.; Yuan, Q.; Dong, B. Appl. Catal. B 2015, 163, 298. doi: 10.1016/j.apcatb.2014.08.013  doi: 10.1016/j.apcatb.2014.08.013

    18. [18]

      Guo, F.; Shi, W. L.; Li, M. Y.; Shi, Y.; Wen, H. B. Sep. Purif. Technol. 2019, 210, 608. doi: 10.1016/j.seppur.2018.08.055  doi: 10.1016/j.seppur.2018.08.055

    19. [19]

      Cheng, H. F.; Huang, B. B.; Dai, Y. Nanoscale 2014, 6 (4), 2009. doi: 10.1039/c3nr05529a  doi: 10.1039/c3nr05529a

    20. [20]

      Xia, J. X.; Ge, Y. P.; Di, J.; Xu, L.; Yin, S.; Chen, Z. G.; Liu, P. J.; Li, H. M. J. Colloid Interface Sci. 2016, 473, 112. doi: 10.1016/j.jcis.2016.03.046  doi: 10.1016/j.jcis.2016.03.046

    21. [21]

      Chou, S. Y.; Chen, C. C.; Dai, Y. M.; Lin, J. H.; Lee, W. W. RSC Adv. 2016, 6 (40), 33478. doi: 10.1039/c5ra28024a  doi: 10.1039/c5ra28024a

    22. [22]

      Zhang, J. Y.; Zhu, G. Q.; Li, S. P.; Rao, F.; Hassan, Q. U.; Gao, J. Z.; Huang, Y.; Hojamberdiev, M. ACS Appl. Mater. Interfaces 2019, 11 (41), 37822. doi: 10.1021/acsami.9b14300  doi: 10.1021/acsami.9b14300

    23. [23]

      Zhu, G. Q.; Li, S. P.; Gao, J. Z.; Zhang, F. C.; Liu, C. L.; Wang, Q. Z.; Hojamberdiev, M. Appl. Surf. Sci. 2019, 493, 913. doi: 10.1016/j.apsusc.2019.07.119  doi: 10.1016/j.apsusc.2019.07.119

    24. [24]

      Mao, X. M.; Xie, F. X.; Li, M. Mater. Lett. 2016, 166, 296. doi: 10.1016/j.matlet.2015.12.090  doi: 10.1016/j.matlet.2015.12.090

    25. [25]

      Ji, M. X.; Di, J.; Ge, Y. P.; Xia, J. X.; Li, H. M. Appl. Surf. Sci. 2017, 413, 372. doi: 10.1016/j.apsusc.2017.03.287  doi: 10.1016/j.apsusc.2017.03.287

    26. [26]

      Liu, D.; Yao, W. Q.; Wang, J.; Liu, Y. F.; Zhang, M.; Zhu, Y. F. Appl. Catal. B 2015, 172–173, 100. doi: 10.1016/j.apcatb.2015.01.037  doi: 10.1016/j.apcatb.2015.01.037

    27. [27]

      Ding, S. S.; Mao, D. J.; Yang, S. G.; Wang, F.; Meng, L. J.; Han, M. S.; He, H.; Sun, C.; Xu, B. Appl. Catal. B 2017, 210, 386. doi: 10.1016/j.apcatb.2017.04.002  doi: 10.1016/j.apcatb.2017.04.002

    28. [28]

      Feng, W. L.; Luo, H.; Wang, Y.; Zeng, S. F.; Tan, Y. Q.; Zhang, H. B.; Peng, S. M. Ceram. Int. 2018, 44 (6), 7084. doi: 10.1016/j.ceramint.2018.01.147  doi: 10.1016/j.ceramint.2018.01.147

    29. [29]

      Li, J. B.; Yan, D.; Hou, S. J.; Li, Y. Q.; Lu, T.; Yao, Y. F.; Pan, L. K. J. Mater. Chem. A 2018, 6 (3), 1234. doi: 10.1039/c7ta08261d  doi: 10.1039/c7ta08261d

    30. [30]

      Low, J. X.; Zhang, L. Y.; Tong, T.; Shen, B. J.; Yu, J. G. J. Catal. 2018, 361, 255. doi: 10.1016/j.jcat.2018.03.009  doi: 10.1016/j.jcat.2018.03.009

    31. [31]

      Zhang, H. L.; Li, M.; Cao, J. L.; Tang, Q. J.; Kang, P.; Zhu, C. X.; Ma, M. J. Ceram. Int. 2018, 44 (16), 19958. doi: 10.1016/j.ceramint.2018.07.262  doi: 10.1016/j.ceramint.2018.07.262

    32. [32]

      Cai, T.; Wang, L. L.; Liu, Y. T.; Zhang, S. Q.; Dong, W. Y.; Chen, H.; Yi, X. Y.; Yuan, J. L.; Xia, X. N.; Liu, C. B.; et al. Appl. Catal. B 2018, 239, 545. doi: 10.1016/j.apcatb.2018.08.053  doi: 10.1016/j.apcatb.2018.08.053

    33. [33]

      Gao, Y. P.; Wang, L. B.; Zhou, A. G.; Li, Z. Y.; Chen, J. K.; Bala, H.; Hu, Q. K.; Cao, X. X. Mater. Lett. 2015, 150, 62. doi: 10.1016/j.matlet.2015.02.135  doi: 10.1016/j.matlet.2015.02.135

    34. [34]

      Yan, P. T.; Zhang, R. J.; Jia, J.; Wu, C.; Zhou, A. G.; Xu, J.; Zhang, X. S. J. Power Sources 2015, 284, 38. doi: 10.1016/j.jpowsour.2015.03.017  doi: 10.1016/j.jpowsour.2015.03.017

    35. [35]

      Li, Z. Z.; Zhang, H. G.; Wang, L.; Meng, X. C.; Shi, J. J.; Qi, C. X.; Zhang, Z. S.; Feng, L. J.; Li, C. H. J. Photochem. Photobiol. A 2020, 386, 112099. doi: 10.1016/j.jphotochem.2019.112099  doi: 10.1016/j.jphotochem.2019.112099

    36. [36]

      Li, Y. J.; Deng, X. T.; Tian, J.; Liang, Z. Q.; Cui, H. Z. Appl. Mater. Today 2018, 13, 217. doi: 10.1016/j.apmt.2018.09.004  doi: 10.1016/j.apmt.2018.09.004

    37. [37]

      Peng, C.; Wang, H. J.; Yu, H.; Peng, F. Mater. Res. Bull. 2017, 89, 16. doi: 10.1016/j.materresbull.2016.12.049  doi: 10.1016/j.materresbull.2016.12.049

    38. [38]

      Li, R.; Liu, J. X.; Zhang, X. F.; Wang, Y. W.; Wang, Y. F.; Zhang, C. M.; Zhang, X. C.; Fan, C. M. Chem. Eng. J. 2018, 339, 42. doi: 10.1016/j.cej.2018.01.109  doi: 10.1016/j.cej.2018.01.109

    39. [39]

      Bai, Y.; Chen, T.; Wang, P. Q.; Wang, L.; Ye, L. Q. Chem. Eng. J. 2016, 304, 454. doi: 10.1016/j.cej.2016.06.100  doi: 10.1016/j.cej.2016.06.100

    40. [40]

      Xue, Q.; Zhang, H. J.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Huang, Y.; Huang, Y.; Deng, Q. H.; Zhou, J.; et al. Adv. Mater. 2017, 29 (15), 1604847. doi: 10.1002/adma.201604847  doi: 10.1002/adma.201604847

    41. [41]

      Liu, N.; Lu, N.; Su, Y.; Wang, P.; Quan, X. Sep. Purif. Technol. 2019, 211, 782. doi: 10.1016/j.seppur.2018.10.027  doi: 10.1016/j.seppur.2018.10.027

    42. [42]

      Bai, X. J.; Wang, L.; Wang, Y. J.; Yao, W. Q.; Zhu, Y. F. Appl. Catal. B 2014, 152–153, 262. doi: 10.1016/j.apcatb.2014.01.046  doi: 10.1016/j.apcatb.2014.01.046

    43. [43]

      Wang, H.; He, W. J.; Dong, X. A.; Wang, H. Q.; Dong, F. Chin. Sci. Bull. 2018, 63 (2), 117. doi: 10.1016/j.scib.2017.12.013  doi: 10.1016/j.scib.2017.12.013

    44. [44]

      Dong, G. H.; Ho, W. K.; Li, Y. H.; Zhang, L. Z. Appl. Catal. B 2015, 174–175, 477. doi: 10.1016/j.apcatb.2015.03.035  doi: 10.1016/j.apcatb.2015.03.035

    45. [45]

      Zhang, W. D.; Liu, X. L.; Dong, X. A.; Dong, F.; Zhang, Y. X. Chin. J. Catal. 2017, 38 (12), 2030. doi: 10.1016/s1872-2067(17)62941-3  doi: 10.1016/s1872-2067(17)62941-3

    46. [46]

      Rao, F.; Zhu, G. Q.; Hojamberdiev, M.; Zhang, W. B.; Li, S. P.; Gao, J. Z.; Zhang, F. C.; Huang, Y. H.; Huang, Y. J. Phys. Chem. C 2019, 123 (26), 16268. doi: 10.1021/acs.jpcc.9b03961  doi: 10.1021/acs.jpcc.9b03961

    47. [47]

      Cao, T.; Huo, W. C.; Guo, Z. Y.; Jing, C.; Chen, Y. X.; Zhang, Y. X.; Zhou, Z. Appl. Surf. Sci. 2019, 498, 143848. doi: 10.1016/j.apsusc.2019.143848  doi: 10.1016/j.apsusc.2019.143848

    48. [48]

      Zhu, G. Q.; Hojamberdiev, M.; Zhang, S. L.; Din, S. T. U.; Yang, W. Appl. Surf. Sci. 2019, 467–468, 968. doi: 10.1016/j.apsusc.2018.10.246  doi: 10.1016/j.apsusc.2018.10.246

  • 加载中
    1. [1]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    4. [4]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    5. [5]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    6. [6]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    7. [7]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    8. [8]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    9. [9]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    10. [10]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    11. [11]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    12. [12]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    13. [13]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    14. [14]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    15. [15]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    16. [16]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    17. [17]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    18. [18]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(4)
  • Abstract views(413)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return