Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air
- Corresponding author: Ying Yang, muyicaoyang@csu.edu.cn
Citation: Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200500. doi: 10.3866/PKU.WHXB202005007
Hodes, G. Science 2013, 342, 317. doi: 10.1126/science.1245473
doi: 10.1126/science.1245473
Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2016, 7, 167. doi: 10.1021/acs.jpclett.5b02597
doi: 10.1021/acs.jpclett.5b02597
Lee, M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2013, 338, 643. doi: 10.1126/science.1228604
doi: 10.1126/science.1228604
Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A. Nat. Photonics 2013, 7, 486. doi: 10.1038/NPHOTON.2013.80
doi: 10.1038/NPHOTON.2013.80
Chen, R.; Wang, W.; Bu, T. L.; Ku, Z. L.; Zhong, J.; Peng, Y.; Xiao, S. Q.; You, W.; Huang, F. Z.; Cheng, Y. B.; Fu, Z. Y. Acta Phys. -Chim. Sin. 2019, 35, 401.
doi: 10.3866/PKU.WHXB201803131
Ding, L. M.; Cheng, Y. B.; Tang, J. Acta Phys. -Chim. Sin. 2018, 34, 449.
doi: 10.3866/PKU.WHXB201710121
Huang, P.; Yuan, L. G.; Li, Y. W.; Zhou, Y.; Song, B. Acta Phys. -Chim. Sin. 2018, 34, 1264.
doi: 10.3866/PKU.WHXB201804096
Yang, Y.; Chen, T.; Pan, D. Q.; Gao, J.; Zhu, C. T.; Lin, F. Y.; Zhou, C. H.; Tai, Q. D.; Xiao, S.; Yuan, Y. B.; et al. Nano Energy 2020, 67, 104246. doi: 10.1016/j.nanoen.2019.104246
doi: 10.1016/j.nanoen.2019.104246
NREL Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf (accessed April 6, 2020).
Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H. Nano Lett. 2017, 17, 2028. doi: 10.1021/acs.nanolett.7b00050
doi: 10.1021/acs.nanolett.7b00050
Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. J. Am. Chem. Soc. 2018, 140, 12345. doi: 10.1021/jacs.8b07927
doi: 10.1021/jacs.8b07927
Liu, C.; Li, W.; Chen, J.; Fan, J.; Mai, Y.; Schropp, R. E. Nano Energy 2017, 41, 75. doi: 10.1016/j.nanoen.2017.08.048
doi: 10.1016/j.nanoen.2017.08.048
Hu, Y.; Bai, F.; Liu, X.; Ji, Q.; Miao, X.; Qiu, T.; Zhang, S. ACS Energy Lett. 2017, 2, 2219. doi: 10.1021/acsenergylett.7b00508
doi: 10.1021/acsenergylett.7b00508
Duan, J.; Zhao, Y.; Yang, X.; Wang, Y.; He, B.; Tang, Q. Adv. Energy. Mater. 2018, 8, 1802346. doi: 10.1002/aenm.201802346
doi: 10.1002/aenm.201802346
Lim, K. G.; Ahn, S.; Kim, Y. H.; Qi, Y. B.; Lee, T. W. Energy Environ Sci. 2016, 9, 932. doi: 10.1039/c5ee03560k
doi: 10.1039/c5ee03560k
Jena, A. K.; Kulkarni, A.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Chem. Mater. 2018, 30, 6668. doi: 10.1021/acs.chemmater.8b01808
doi: 10.1021/acs.chemmater.8b01808
Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Chirstians, J. A.; Chakrabarti, T.; Luther, J. M. Science 2016, 354, 92. doi: 10.1126/science.aag2700
doi: 10.1126/science.aag2700
Zhang, J. R.; Hodes, G.; Jin, Z.; Liu, S. Z. Angew. Chem. -Int. Edit. 2019, 58, 15596. doi: 10.1002/anie.201901081
doi: 10.1002/anie.201901081
Fu, L.; Zhang, Y.; Li, B.; Zhou, S.; Zhang, L.; Yin, L.W. J. Mater. Chem. A 2018, 6, 13263. doi: 10.1039/c8ta02899k
doi: 10.1039/c8ta02899k
Bai, D. L.; Zhang, J. R.; Jin, Z. W.; Bian, H.; Wang, K.; Wang, H. R.; Liang, L.; Wang. Q.; Liu, S. Z. ACS Energy Lett. 2018, 3, 970. doi: 10.1021/acsenergylett.8b00270
doi: 10.1021/acsenergylett.8b00270
Liu, C.; Li, W. Z.; Zhang, C.; Ma, Y. P.; Fan, J. D.; Mai, Y. H. J. Am. Chem. Soc. 2018, 140, 3825. doi: 10.1021/jacs.7b13229
doi: 10.1021/jacs.7b13229
Meng, X. Y.; Wang, Z.; Qian, W.; Zhu, Z. L.; Zhang, T.; Bai, Y.; Hu, C.; Xiao, S.; Yang, Y. L.; Yang, S. H. J. Phys. Chem. Lett. 2019, 10, 194. doi: 10.1021/acs.jpclett.8b03742
doi: 10.1021/acs.jpclett.8b03742
Zhang, T.; Li, H.; Liu, S. S.; Wang, X. K.; Gong, X.; Sun, Q.; Shen, Y.; Wang, M.K. J. Phys. Chem. Lett. 2019, 10, 200. doi: 10.1021/acs.jpclett.8b03481
doi: 10.1021/acs.jpclett.8b03481
Nam, J. K.; Jung, M. S.; Chai, S. U.; Choi, Y. J.; Kim, D.; Park, J. H. J. Phys. Chem. Lett. 2017, 8, 2936. doi: 10.1021/acs.jpclett.7b01067
doi: 10.1021/acs.jpclett.7b01067
Zhang, H.; Nazeeruddin, M. K.; Choy, W. C. H. Adv. Mater. 2019, 31, 1805702. doi: 10.1002/adma.201805702
doi: 10.1002/adma.201805702
Olthof, S.; Meerholz, K. Sci. Rep. 2017, 7, 40267. doi: 10.1038/srep40267
doi: 10.1038/srep40267
Zhu, Z. L.; Bai, Y.; Liu, X.; Chueh, C. C.; Yang, S. H.; Jen, A. K. Adv. Mater. 2016, 28, 6478. doi: 10.1002/adma.201600619
doi: 10.1002/adma.201600619
Lau, C. F. J.; Zhang, M.; Deng, X.; Zheng. J.; Bing, J.; Ma, Q.; Kim, J.; Hu, L.; Green, M. A.; Huang, J. S.; Ho-Baillie, A. ACS Energy Lett. 2017, 2, 2319. doi: 10.1021/acsenergylett.7b00751
doi: 10.1021/acsenergylett.7b00751
Chen, W. J.; Chen, H. Y.; Xu, G. Y.; Xue, R. M.; Wang, S. H.; Li, Y. W.; Li, Y. F. Joule 2019, 3, 191. doi: 10.1016/j.joule.2018.10.011
doi: 10.1016/j.joule.2018.10.011
Zhen, C.; Wu, T. T.; Chen, R. Z.; Wang, L. Z.; Liu, G.; Cheng, H. M. ACS Sustainable Chem. Eng. 2019, 7, 4586. doi: 10.1021/acssuschemeng.8b06580
doi: 10.1021/acssuschemeng.8b06580
Qiao, G. X.; Zeng, Z.; Gao, J. W.; Tang, Y. P.; Wang, Q. M. J. Alloys Compd. 2019, 771, 418. doi: 10.1016/j.jallcom.2018.08.322
doi: 10.1016/j.jallcom.2018.08.322
Kim, H. S.; Park, N. G. J. Phys. Chem. Lett. 2014, 5, 2927. doi: 10.1021/jz501392m
doi: 10.1021/jz501392m
Lindblad, R.; Bi, D. Q.; Park, B. W.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E. M.J.; Rensmo. H. J. Phys. Chem. Lett. 2014, 5, 648. doi: 10.1021/jz402749f
doi: 10.1021/jz402749f
Park, B.; Johansson, E. M. J.; Philippe, B.; Gustafsson, T.; Sveinbjornsson, K.; Hagfeldt, A.; Boschloo, G. Chem. Mater. 2014, 26, 4466. doi: 10.1021/cm501541p
doi: 10.1021/cm501541p
Zhang, S.; Wu, S.; Chen, W.; Zhu, H.; Xiong, Z.; Yang, Z.; Chen, C.; Chen, R.; Han, L.; Chen, W. Mater. Today Energy 2018, 8, 125. doi: 10.1016/j.mtener.2018.03.006
doi: 10.1016/j.mtener.2018.03.006
Sutton, R. J.; Eperson, G. E.; Miranda, E.S.; Parrott, B. A.; Kamino, J. B.; Patel, M. T.; Horantner, M. B.; Johnston, A. A.; Moore, D. T. Adv. Energy Mater. 2016, 6, 1502458. doi: 10.1002/aenm.201502458
doi: 10.1002/aenm.201502458
Dong, C.; Han, X.; Zhao, Y.; Li, J.; Chang, L.; Zhao, W. Sol. RRL 2018, 2, 1800139. doi: 10.1002/solr.201800139
doi: 10.1002/solr.201800139
Luo, P.; Xia, W.; Zhou, S.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. J. Phys. Chem. Lett. 2016, 7, 3603. doi: 10.1021/acs.jpclett.6b01576
doi: 10.1021/acs.jpclett.6b01576
Mariotti, S.; Hutter, O. S.; Phillips, L. J.; Yates, P. J.; Kundu, B.; Durose, K. ACS Appl. Mater. Interfaces 2018, 10, 3750. doi: 10.1021/acsami.7b14039
doi: 10.1021/acsami.7b14039
Sun, W. F.; Choy, K. L.; Wang, M. Q. Molecules 2019, 24, 3466. doi: 10.3390/molecules24193466
doi: 10.3390/molecules24193466
Rong, Y. G.; Liu, L. F.; Mei, A. Y.; Li, X.; Han, H. W. Adv. Energy Mater. 2015, 5, 1501066. doi: 10.1002/aenm.201501066
doi: 10.1002/aenm.201501066
Bai, D. L.; Bian, H.; Jin, Z. W.; Wang, H. R.; Meng, L. N.; Wang, Q.; Liu, S. Z. Nano Energy 2018, 52, 408. doi: 10.1016/j.nanoen.2018.08.012
doi: 10.1016/j.nanoen.2018.08.012
Yan, L.; Xue, Q. F.; Liu, M. Y.; Zhu, Z. L.; Tian, J. J.; Li, Z. C.; Chen, Z.; Chen, Z. M.; Yan, H.; Yip, H. L.; Cao, Y. Adv. Mater. 2018, 30, 1802509. doi: 10.1002/adma.201802509
doi: 10.1002/adma.201802509
Xiang, W.; Wang, Z.; Kubicki, D. J.; Tress, W. G.; Luo, J. S.; Daniel, P.; Akin, S.; Emsley, L.; Zhou, J.; Dietler, G.; et al. Joule 2019, 3, 205. doi: 10.1016/j.joule.2018.10.008
doi: 10.1016/j.joule.2018.10.008
Wang, Q.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B 2005, 109, 14945. doi: 10.1021/jp052768h
doi: 10.1021/jp052768h
Guerrero, A.; Garcia-Belmonte, G.; Mora- Sero, I.; Bisquert, J.; Kang, S. Y.; Jacobsson, T. J.; Correa-Baena, J. P.; Hagfeldt, A. J. Phys. Chem. C 2016, 120, 8023. doi: 10.1021/acs.jpcc.6b01728
doi: 10.1021/acs.jpcc.6b01728
Giustino, F.; Snaith, H. J. ACS Energy Lett. 2016, 1, 1233. doi: 10.1021/acsenergylett.6b00499
doi: 10.1021/acsenergylett.6b00499
Xiang, W.; Tress, W. Adv. Mater. 2019, 31. doi: 10.1002/adma.201902851
doi: 10.1002/adma.201902851
Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. J. Phys. Chem. Lett. 2016, 7, 746. doi: 10.1021/acs.jpclett.6b00002
doi: 10.1021/acs.jpclett.6b00002
Li, W.; Rothmann, M. U.; Liu, A.; Wang, Z. Y.; Zhang, Y. P.; Pascoe, A. R.; Lu, J. F.; Jiang, L. C.; Chen, Y.; Huang, F. Z.; et al. Adv. Energy Mater. 2017, 7, 1700946. doi: 10.1002/aenm.201700946
doi: 10.1002/aenm.201700946
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060