Citation: Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200500. doi: 10.3866/PKU.WHXB202005006 shu

Nacre-Inspired Graphene-based Multifunctional Nanocomposites

  • Corresponding author: Qunfeng Cheng, cheng@buaa.edu.cn
  • Received Date: 5 May 2020
    Revised Date: 10 July 2020
    Accepted Date: 10 July 2020
    Available Online: 14 July 2020

    Fund Project: the National Natural Science Foundation of China 51522301the National Natural Science Foundation of China 51961130388the National Natural Science Foundation of China 21875010the National Natural Science Foundation of China 21273017the National Natural Science Foundation of China 51103004the Newton Advanced Fellowship NAF\R1\191235the Beijing Natural Science Foundation, China JQ19006the 111 Project, China B14009the Fundamental Research Funds for the Central Universities, China YWF-19-BJ-J-8

  • Graphene is a 2D nanocomposite that has been gaining popularity in the research community in recent years. It is light weight with high tensile strength and excellent electrical conductivity. While graphene nanosheets are typically assembled into macroscopic nanocomposites, their beneficial properties may degrade from the aggregation of nanosheets owing to the weak interfacial interactions caused by random orientation and many other obstacles. Thus, finding an effective way to assemble the graphene nanosheets while not impacting its intrinsic properties is challenging. In nature, live organisms have always assembled numerous nanomaterials into high-performance nanocomposites. For example, nacre is composed of aragonite nanoplatelets and biopolymers such as protein and chitin. The aragonite nanoplatelets with a 95% volume fraction are stacked into a layered structure and "glued" together by biopolymers based on the "brick-and-mortar" architecture. The fracture toughness is 3000 times higher than natural aragonite minerals owing to the "extrinsic toughening mechanism" from the crack deflection and bridging in the "brick-and-mortar" architecture. We propose a nacre-inspired layered structure in graphene-based nanocomposites with two complementary strategies: constructing nacre-like and inverse nacre-like structures. This paper first introduces the structure and toughening mechanism of nacre and clarify the advantages of a bioinspired strategies. Then, some of the recent work on nacre-inspired graphene-based multifunctional nanocomposites is discussed. To construct the nacre-like structure, we fabricated graphene-based fibers and membranes with graphene as the main component. The nacre-like graphene-based nanocomposites have excellent tensile strength and toughness due to the synergistic effects from interfacial interactions and building blocks. It also demonstrated high electrical conductivity, which makes it suitable for electromagnetic interference shielding or supercapacitors. We also fabricated inverse nacre-like graphene-based nanocomposites with a small amount of graphene. The inverse nacre-like graphene-based nanocomposites has a layered structure and exhibited the "extrinsic toughening mechanism" seen in nacre. Consequently, the inverse nacre-like graphene-based nanocomposites possesses high fracture toughness that pushes the limit of "mixing rule". With the addition of graphene, the inverse nacre-like nanocomposites are suitable for use in many applications such as electrical conductivity, electrical heating, temperature measurement and many other functions. Finally, our study summarizes the strategies to overcome the obstacles we encountered during the assembly process to construct both the nacre-like and inverse nacre-like structures that were based on graphene. Some of the challenges we encountered include the small sample size, the quality of graphene nanosheets and developing hierarchical assembly techniques. The upcoming trends in nacre-inspired graphene-based multifunctional nanocomposites will also be discussed.
  • 加载中
    1. [1]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    2. [2]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    3. [3]

      Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312, 1191. doi: 10.1126/science.1125925  doi: 10.1126/science.1125925

    4. [4]

      Huang, C.; Cheng, Q. Compos. Sci. Technol. 2017, 150, 141. doi: 10.1016/j.compscitech.2017.07.021  doi: 10.1016/j.compscitech.2017.07.021

    5. [5]

      Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Adv. Mater. 2016, 28, 7862. doi: 10.1002/adma.201601934  doi: 10.1002/adma.201601934

    6. [6]

      Wegst, U. G.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Nat. Mater. 2015, 14, 23. doi: 10.1038/nmat4089  doi: 10.1038/nmat4089

    7. [7]

      Barthelat, F.; Yin, Z.; Buehler, M. J. Nat. Rev. Mater. 2016, 1, 16007. doi: 10.1038/natrevmats.2016.7  doi: 10.1038/natrevmats.2016.7

    8. [8]

      Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. Prog. Mater. Sci. 2009, 54, 1059. doi: 10.1016/j.pmatsci.2009.05.001  doi: 10.1016/j.pmatsci.2009.05.001

    9. [9]

      Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature 2007, 448, 457. doi: 10.1038/nature06016  doi: 10.1038/nature06016

    10. [10]

      Keten, S.; Buehler, M. J. Nano Lett. 2008, 8, 743. doi: 10.1021/nl0731670  doi: 10.1021/nl0731670

    11. [11]

      Park, S.; Lee, K. S.; Bozoklu, G.; Cai, W.; Nguyen, S. T.; Ruoff, R. S. ACS Nano 2008, 2, 572. doi: 10.1021/nn700349a  doi: 10.1021/nn700349a

    12. [12]

      Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc. 2008, 130, 5856. doi: 10.1021/ja800745y  doi: 10.1021/ja800745y

    13. [13]

      Putz, K. W.; Compton, O. C.; Palmeri, M. J.; Nguyen, S. T.; Brinson, L. C. Adv. Funct. Mater. 2010, 20, 3322. doi: 10.1002/adfm.201000723  doi: 10.1002/adfm.201000723

    14. [14]

      Li, Y. Q.; Yu, T.; Yang, T. Y.; Zheng, L. X.; Liao, K. Adv. Mater. 2012, 24, 3426. doi: 10.1002/adma.201200452  doi: 10.1002/adma.201200452

    15. [15]

      Hu, K.; Tolentino, L. S.; Kulkarni, D. D.; Ye, C.; Kumar, S.; Tsukruk, V. V. Angew. Chem. Int. Ed. 2013, 52, 13784. doi: 10.1002/anie.201307830  doi: 10.1002/anie.201307830

    16. [16]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448  doi: 10.1002/adma.201203448

    17. [17]

      Yeh, C. N.; Raidongia, K.; Shao, J.; Yang, Q. H.; Huang, J. Nat. Chem. 2014, 7, 166. doi: 10.1038/nchem.2145  doi: 10.1038/nchem.2145

    18. [18]

      Zhang, M.; Huang, L.; Chen, J.; Li, C.; Shi, G. Adv. Mater. 2014, 26, 7588. doi: 10.1002/adma.201403322  doi: 10.1002/adma.201403322

    19. [19]

      Wang, J.; Qiao, J.; Wang, J.; Zhu, Y.; Jiang, L. ACS Appl. Mater. Interfaces 2015, 7, 9281. doi: 10.1021/acsami.5b02194  doi: 10.1021/acsami.5b02194

    20. [20]

      Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Science 2015, 349, 1083. doi: 10.1126/science.aaa6502  doi: 10.1126/science.aaa6502

    21. [21]

      Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464. doi: 10.1021/acs.chemrev.5b00620  doi: 10.1021/acs.chemrev.5b00620

    22. [22]

      Xiong, R.; Hu, K.; Grant, A. M.; Ma, R.; Xu, W.; Lu, C.; Zhang, X.; Tsukruk, V. V. Adv. Mater. 2016, 28, 1501. doi: 10.1002/adma.201504438  doi: 10.1002/adma.201504438

    23. [23]

      Ye, S.; Chen, B.; Hu, D.; Liu, C.; Feng, J. ChemNanoMat 2016, 2, 816. doi: 10.1002/cnma.201600127  doi: 10.1002/cnma.201600127

    24. [24]

      Zhao, H.; Yue, Y.; Zhang, Y.; Li, L.; Guo, L. Adv. Mater. 2016, 28, 2037. doi: 10.1002/adma.201505511  doi: 10.1002/adma.201505511

    25. [25]

      He, G.; Xu, M.; Zhao, J.; Jiang, S.; Wang, S.; Li, Z.; He, X.; Huang, T.; Cao, M.; Wu, H.; et al. Adv. Mater. 2017, 29, 1605898. doi: 10.1002/adma.201605898  doi: 10.1002/adma.201605898

    26. [26]

      Xin, G.; Zhu, W.; Deng, Y.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14, 168. doi: 10.1038/s41565-018-0330-9  doi: 10.1038/s41565-018-0330-9

    27. [27]

      Li, P.; Yang, M.; Liu, Y.; Qin, H.; Liu, J.; Xu, Z.; Liu, Y.; Meng, F.; Lin, J.; Wang, F.; et al. Nat. Commun. 2020, 11, 2645. doi: 10.1038/s41467-020-16494-0  doi: 10.1038/s41467-020-16494-0

    28. [28]

      Wan, S.; Cheng, Q. Adv. Funct. Mater. 2017, 27, 1703459. doi: 10.1002/adfm.201703459  doi: 10.1002/adfm.201703459

    29. [29]

      Zhang, Y.; Gong, S.; Zhang, Q.; Ming, P.; Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Chem. Soc. Rev. 2016, 45, 2378. doi: 10.1039/c5cs00258c  doi: 10.1039/c5cs00258c

    30. [30]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    31. [31]

      Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. Adv. Mater. 2016, 28, 2834. doi: 10.1002/adma.201506074  doi: 10.1002/adma.201506074

    32. [32]

      Zhang, Y.; Peng, J.; Li, M.; Saiz, E.; Wolf, S. E.; Cheng, Q. ACS Nano 2018, 12, 8901. doi: 10.1021/acsnano.8b04322  doi: 10.1021/acsnano.8b04322

    33. [33]

      Wang, X.; Peng, J.; Zhang, Y.; Li, M.; Saiz, E.; Tomsia, A. P.; Cheng, Q. ACS Nano 2018, 12, 12638. doi: 10.1021/acsnano.8b07392  doi: 10.1021/acsnano.8b07392

    34. [34]

      Cheng, Y. R.; Peng, J. S.; Xu, H. J.; Cheng, Q. F. Adv. Funct. Mater. 2018, 28, 1800924. doi: 10.1002/adfm.201800924  doi: 10.1002/adfm.201800924

    35. [35]

      Wan, S.; Zhang, Q.; Zhou, X.; Li, D.; Ji, B.; Jiang, L.; Cheng, Q. ACS Nano 2017, 11, 7074. doi: 10.1021/acsnano.7b02706  doi: 10.1021/acsnano.7b02706

    36. [36]

      Akbari, A.; Cunning, B. V.; Joshi, S. R.; Wang, C.; Camacho-Mojica, D. C.; Chatterjee, S.; Modepalli, V.; Cahoon, C.; Bielawski, C. W.; Bakharev, P.; et al. Matter 2020, 2, 1198. doi: 10.1016/j.matt.2020.02.014  doi: 10.1016/j.matt.2020.02.014

    37. [37]

      Wan, S.; Li, Y.; Mu, J.; Aliev, A. E.; Fang, S.; Kotov, N. A.; Jiang, L.; Cheng, Q.; Baughman, R. H. Proc. Natl. Acad. Sci. USA 2018, 115, 5359. doi: 10.1073/pnas.1719111115  doi: 10.1073/pnas.1719111115

    38. [38]

      Zhou, T.; Ni, H.; Wang, Y.; Wu, C.; Zhang, H.; Zhang, J.; Tomsia, A. P.; Jiang, L.; Cheng, Q. Proc. Natl. Acad. Sci. USA 2020, 117, 8727. doi: 10.1073/pnas.1916610117  doi: 10.1073/pnas.1916610117

    39. [39]

      Cui, W.; Li, M.; Liu, J.; Wang, B.; Zhang, C.; Jiang, L.; Cheng, Q. ACS Nano 2014, 8, 9511. doi: 10.1021/nn503755c  doi: 10.1021/nn503755c

    40. [40]

      Wan, S. J.; Peng, J. S.; Li, Y. C.; Hu, H.; Jiang, L.; Cheng, Q. F. ACS Nano 2015, 9, 9830. doi: 10.1021/acsnano.5b02902  doi: 10.1021/acsnano.5b02902

    41. [41]

      Degtyar, E.; Harrington, M. J.; Politi, Y.; Fratzl, P. Angew. Chem. Int. Ed. 2014, 53, 12026. doi: 10.1002/anie.201404272  doi: 10.1002/anie.201404272

    42. [42]

      Huang, X.; Zeng, Z.; Zhang, H. Chem. Soc. Rev. 2013, 42, 1934. doi: 10.1039/c2cs35387c  doi: 10.1039/c2cs35387c

    43. [43]

      Liu, Y.; Rodrigues, J. N. B.; Luo, Y. Z.; Li, L.; Carvalho, A.; Yang, M.; Laksono, E.; Lu, J.; Bao, Y.; Xu, H.; et al. Nat. Nanotechnol. 2018, 13, 828. doi: 10.1038/s41565-018-0178-z  doi: 10.1038/s41565-018-0178-z

    44. [44]

      Dong, X.; Fu, D.; Fang, W.; Shi, Y.; Chen, P.; Li, L. J. Small 2009, 5, 1422. doi: 10.1002/smll.200801711  doi: 10.1002/smll.200801711

    45. [45]

      Das, B.; Voggu, R.; Rout, C. S.; Rao, C. N. Chem. Commun. 2008, 5155. doi: 10.1039/b808955h  doi: 10.1039/b808955h

    46. [46]

      Su, Y. H.; Wu, Y. K.; Tu, S. L.; Chang, S. J. Appl. Phys. Lett. 2011, 99, 163102. doi: 10.1063/1.3653284  doi: 10.1063/1.3653284

    47. [47]

      Ni, H.; Xu, F.; Tomsia, A. P.; Saiz, E.; Jiang, L.; Cheng, Q. ACS Appl. Mater. Interfaces 2017, 9, 24987. doi: 10.1021/acsami.7b07748  doi: 10.1021/acsami.7b07748

    48. [48]

      Gong, S.; Cui, W.; Zhang, Q.; Cao, A.; Jiang, L.; Cheng, Q. ACS Nano 2015, 9, 11568. doi: 10.1021/acsnano.5b05252  doi: 10.1021/acsnano.5b05252

    49. [49]

      Wan, S.; Li, Y.; Peng, J.; Hu, H.; Cheng, Q.; Jiang, L. ACS Nano 2015, 9, 708. doi: 10.1021/nn506148w  doi: 10.1021/nn506148w

    50. [50]

      Wang, J.; Cheng, Q.; Lin, L.; Jiang, L. ACS Nano 2014, 8, 2739. doi: 10.1021/nn406428n  doi: 10.1021/nn406428n

    51. [51]

      Wan, S.; Xu, F.; Jiang, L.; Cheng, Q. Adv. Funct. Mater. 2017, 27, 1605636. doi: 10.1002/adfm.201605636  doi: 10.1002/adfm.201605636

    52. [52]

      Cheng, Q.; Wu, M.; Li, M.; Jiang, L.; Tang, Z. Angew. Chem. Int. Ed. 2013, 52, 3750. doi: 10.1002/anie.201210166  doi: 10.1002/anie.201210166

    53. [53]

      Song, P.; Xu, Z.; Wu, Y.; Cheng, Q.; Guo, Q.; Wang, H. Carbon 2017, 111, 807. doi: 10.1016/j.carbon.2016.10.067  doi: 10.1016/j.carbon.2016.10.067

    54. [54]

      Gong, S.; Jiang, L.; Cheng, Q. J. Mater. Chem. A 2016, 4, 17073. doi: 10.1039/c6ta06893f  doi: 10.1039/c6ta06893f

    55. [55]

      Gong, S.; Zhang, Q.; Wang, R.; Jiang, L.; Cheng, Q. J. Mater. Chem. A 2017, 5, 16386. doi: 10.1039/c7ta03535g  doi: 10.1039/c7ta03535g

    56. [56]

      Ming, P.; Song, Z.; Gong, S.; Zhang, Y.; Duan, J.; Zhang, Q.; Jiang, L.; Cheng, Q. J. Mater. Chem. A 2015, 3, 21194. doi: 10.1039/c5ta05742f  doi: 10.1039/c5ta05742f

    57. [57]

      Gong, S.; Wu, M.; Jiang, L.; Cheng, Q. Mater. Res. Express 2016, 3, 075002. doi: 10.1088/2053-1591/3/7/075002  doi: 10.1088/2053-1591/3/7/075002

    58. [58]

      Wan, S.; Hu, H.; Peng, J.; Li, Y.; Fan, Y.; Jiang, L.; Cheng, Q. Nanoscale 2016, 8, 5649. doi: 10.1039/c6nr00562d  doi: 10.1039/c6nr00562d

    59. [59]

      Zhang, Q.; Wan, S.; Jiang, L.; Cheng, Q. Sci. China: Technol. Sci. 2017, 60, 758. doi: 10.1007/s11431-016-0529-3  doi: 10.1007/s11431-016-0529-3

    60. [60]

      Wan, S.; Chen, Y.; Wang, Y.; Li, G.; Wang, G.; Liu, L.; Zhang, J.; Liu, Y.; Xu, Z.; Tomsia, A. P. Matter 2019, 1, 389. doi: 10.1016/j.matt.2019.04.006  doi: 10.1016/j.matt.2019.04.006

    61. [61]

      Kumar, A.; Sharma, K.; Dixit, A. R. J. Mater. Sci. 2018, 54, 5992. doi: 10.1007/s10853-018-03244-3  doi: 10.1007/s10853-018-03244-3

    62. [62]

      Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G. H.; Vahid, S. Nanoscale 2015, 7, 10294. doi: 10.1039/c5nr01354b  doi: 10.1039/c5nr01354b

    63. [63]

      Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Compos. Sci. Technol. 2014, 97, 90. doi: 10.1016/j.compscitech.2014.03.014  doi: 10.1016/j.compscitech.2014.03.014

    64. [64]

      Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Science 2006, 311, 515. doi: 10.1126/science.1120937  doi: 10.1126/science.1120937

    65. [65]

      Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Science 2008, 322, 1516. doi: 10.1126/science.1164865  doi: 10.1126/science.1164865

    66. [66]

      Bouville, F.; Maire, E.; Meille, S.; Van de Moortele, B.; Stevenson, A. J.; Deville, S. Nat. Mater. 2014, 13, 508. doi: 10.1038/nmat3915  doi: 10.1038/nmat3915

    67. [67]

      Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A. P.; Ritchie, R. O. Sci. Adv. 2015, 1, e1500849. doi: 10.1126/sciadv.1500849  doi: 10.1126/sciadv.1500849

    68. [68]

      Qiu, L.; Liu, J. Z.; Chang, S. L.; Wu, Y.; Li, D. Nat. Commun. 2012, 3, 1241. doi: 10.1038/ncomms2251  doi: 10.1038/ncomms2251

    69. [69]

      Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W.; et al. Nat. Commun. 2016, 7, 12920. doi: 10.1038/ncomms12920  doi: 10.1038/ncomms12920

    70. [70]

      Picot, O. T.; Rocha, V. G.; Ferraro, C.; Ni, N.; D'Elia, E.; Meille, S.; Chevalier, J.; Saunders, T.; Peijs, T.; Reece, M. J.; et al. Nat. Commun. 2017, 8, 14425. doi: 10.1038/ncomms14425  doi: 10.1038/ncomms14425

    71. [71]

      Si, Y.; Wang, X.; Dou, L.; Yu, J.; Ding, B. Sci. Adv. 2018, 4, eaas8925. doi: 10.1126/sciadv.aas8925  doi: 10.1126/sciadv.aas8925

    72. [72]

      Ferraro, C.; Garcia-Tuñon, E.; Rocha, V. G.; Barg, S.; Fariñas, M. D.; Alvarez-Arenas, T. E. G.; Sernicola, G.; Giuliani, F.; Saiz, E. Adv. Funct. Mater. 2016, 26, 1636. doi: 10.1002/adfm.201504051  doi: 10.1002/adfm.201504051

    73. [73]

      Zhang, H.; Cooper, A. I. Adv. Mater. 2007, 19, 1529. doi: 10.1002/adma.200700154  doi: 10.1002/adma.200700154

    74. [74]

      Riblett, B. W.; Francis, N. L.; Wheatley, M. A.; Wegst, U. G. K. Adv. Funct. Mater. 2012, 22, 4920. doi: 10.1002/adfm.201201323  doi: 10.1002/adfm.201201323

    75. [75]

      Peng, J.; Huang, C.; Cao, C.; Saiz, E.; Du, Y.; Dou, S.; Tomsia, A. P.; Wagner, H. D.; Jiang, L.; Cheng, Q. Matter 2019, 2, 220. doi: 10.1016/j.matt.2019.08.013  doi: 10.1016/j.matt.2019.08.013

    76. [76]

      Huang, C.; Peng, J.; Wan, S.; Du, Y.; Dou, S.; Wagner, H. D.; Tomsia, A. P.; Jiang, L.; Cheng, Q. Angew. Chem. Int. Ed. 2019, 58, 7636. doi: 10.1002/anie.201902410  doi: 10.1002/anie.201902410

    77. [77]

      Huang, C.; Peng, J.; Cheng, Y.; Zhao, Q.; Du, Y.; Dou, S.; Tomsia, A. P.; Wagner, H. D.; Jiang, L.; Cheng, Q. J. Mater. Chem. A 2019, 7, 2787. doi: 10.1039/c8ta10725d  doi: 10.1039/c8ta10725d

    78. [78]

      Zhang, J.; Wang, L. N.; Chen, X. F.; Wang, Y. F.; Niu, C. Y.; Wu, L. X.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2020, 36, 1912002.  doi: 10.3866/PKU.WHXB201912002

    79. [79]

      Li, K. X.; Zhang, T. L.; Li, H. Z.; Li, M. Z.; Song, Y. L. Acta Phys. -Chim. Sin. 2020, 36, 1911057.  doi: 10.3866/PKU.WHXB201911057

    80. [80]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

Metrics
  • PDF Downloads(36)
  • Abstract views(1525)
  • HTML views(445)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return