Citation: Zhu Gaolong, Zhao Chenzi, Yuan Hong, Nan Haoxiong, Zhao Bochen, Hou Lipeng, He Chuangxin, Liu Quanbing, Huang Jiaqi. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200500. doi: 10.3866/PKU.WHXB202005003 shu

Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells

  • Corresponding author: Huang Jiaqi, jqhuang@bit.edu.cn
  • Received Date: 5 May 2020
    Revised Date: 27 May 2020
    Available Online: 18 June 2020

    Fund Project: the China Postdoctoral Science Foundation 2019T120098the National Natural Science Foundation of China 21808124the National Natural Science Foundation of China 21676160The project was supported by the National Key Research and Development Program of China (2016YFA0202500, 2016YFA0200102), the National Natural Science Foundation of China (21676160, 21808124, U1801257), and the China Postdoctoral Science Foundation (2019T120098)the National Natural Science Foundation of China U1801257the National Key Research and Development Program of China 2016YFA0200102the National Key Research and Development Program of China 2016YFA0202500

  • Solid-state Li metal batteries are considered promising next-generation energy storage systems due to its exceptional advantages in terms of safety and high energy density. The continuous process on the development of solid-state fast ionic electrolytes enables the solid-state battery to operate at room temperature. Among these, sulfide-based solid electrolytes have attracted significant attentions due to their extremely high ionic conductivity, excellent deformability, and mild low-temperature processability. However, the full demonstration of practical batteries remains challenging due to the slow lithium-ion transport kinetics at working solid-solid interfaces. The sluggish interfacial transport kinetics mainly result from the poor solid-solid contacts, resulting in poor battery performance. Especially for solid-state pouch cells, the high local current due to the poor contact is amplified by the high working current, leading to rapid failure. Constructing fast ion transport paths between the Li metal anode and solid electrolyte interface is key for the practical application of solid-state batteries. Here a simple protocol was developed to realize fast ionic transportation by wetting the solid electrolyte/Li metal anode interface with localized high salt concentration liquid electrolyte. First, 3.5 mmol lithium trifluoroalfonylimide (LiTFSI) was added into 1, 1, 2, 2-tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether (HFE) and dimethoxyethane (DME) mixed solvent, and stirred to obtain uniformly dispersed localized high-concentration liquid electrolyte, denoted as HFE-DME LiTFSI. The fluidity of liquid electrolyte ensures sufficiently conformal contacts between lithium anode and liquid electrolyte, as well as solid-state electrolyte and liquid electrolyte. Thus, fast ion transportation channels were constructed between the solid electrolyte and Li metal anode by wetting HFE-DME LiTFSI at a concentration of 3.0 μL·cm-2. After liquid phase therapy, the interfacial resistance of solid-state Li|Li4Ti5O12 (LTO) pouch cell rapidly reduced from 4366 to 64 Ω·cm-2 and even lower than the cell that was pressed at 3 MPa in the assemble process (340 Ω·cm-2). This suggests that the ion transport kinetics are significantly improved by liquid phase therapy. Therefore, the solid-state Li metal pouch cell with dimensions of 30 mm × 30 mm showed excellent cycling performances with specific capacities of 107 and 96 mAh·g-1 at 0.1C and 0.5C, respectively. Furthermore, the solid-state Li-S pouch cell delivered capacities of 1100 and 932 mAh·g-1 at 0.01C and 0.02C, respectively. This study demonstrates the effectiveness of the novel liquid phase therapy to construct fast ionic transportation channels, which providing an effective strategy for the practical application of solid-state Li metal pouch cells.
  • 加载中
    1. [1]

      Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chem 2019, 5, 74. doi: 10.1016/j.chempr.2018.12.002  doi: 10.1016/j.chempr.2018.12.002

    2. [2]

      Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Adv. Energy Mater. 2017, 7, 1700260. doi: 10.1002/aenm.201700260  doi: 10.1002/aenm.201700260

    3. [3]

      Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q.; Huang, J. Q. InfoMat 2019, 1, 533. doi: 10.1002/inf2.12056  doi: 10.1002/inf2.12056

    4. [4]

      Shen, X.; Cheng, X.; Shi, P.; Huang, J.; Zhang, X.; Yan, C.; Li, T.; Zhang, Q. J. Energy Chem. 2019, 37, 29. doi: 10.1016/j.jechem.2018.11.016  doi: 10.1016/j.jechem.2018.11.016

    5. [5]

      Chen, J. X.; Zhang, X. Q.; Li, B. Q.; Wang, X. M.; Shi, P.; Zhu, W.; Chen, A.; Jin, Z.; Xiang, R.; Huang, J. Q. J. Energy Chem. 2020, 47, 128. doi: 10.1016/j.jechem.2019.11.024  doi: 10.1016/j.jechem.2019.11.024

    6. [6]

      Jiang, J. H.; Wang, A. B.; Wang, W. K.; Jin, Z. Q.; Fan, L. Z. J. Energy Chem. 2020, 46, 114. doi: 10.1016/j.jechem.2019.10.009  doi: 10.1016/j.jechem.2019.10.009

    7. [7]

      Yan, C.; Yuan, H.; Park, H. S. Huang, J. Q. J. Energy Chem. 2020, 47, 217. doi: 10.1016/j.jechem.2019.09.034  doi: 10.1016/j.jechem.2019.09.034

    8. [8]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365.  doi: 10.3866/PKU.WHXB201903008

    9. [9]

      Chen, K.; Sun, Z. H.; Fang, R. P.; Li, F.; Cheng, H. M. Acta Phys. -Chim. Sin. 2018, 34, 377.  doi: 10.3866/PKU.WHXB201709001

    10. [10]

      Oh, P.; Lee, H.; Park, S.; Cha, H.; Kim, J.; Cho, J. Adv. Energy Matter. 2020, 2000904. doi: 10.1002/aenm.202000904  doi: 10.1002/aenm.202000904

    11. [11]

      Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Matter 2020, 2, 1. doi: 10.1016/j.matt.2020.03.015  doi: 10.1016/j.matt.2020.03.015

    12. [12]

      Zhang, X. Q.; Zhao, C. Z.; Huang, J. Q. Zhang, Q. Engineering 2018, 4, 831. doi: 10.1016/j.eng.2018.10.008  doi: 10.1016/j.eng.2018.10.008

    13. [13]

      Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Sci. China Chem. 2019, 62, 1286. doi: 10.1007/s11426-019-9519-9  doi: 10.1007/s11426-019-9519-9

    14. [14]

      Ates, T.; Keller, M.; Kulisch, J.; Adermann, T. Passerini, S. Energy Storage Mater. 2019, 17, 204. doi: 10.1016/j.ensm.2018.11.011  doi: 10.1016/j.ensm.2018.11.011

    15. [15]

      Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Nat. Chem. 2016, 8, 426. doi: 10.1038/nchem.2470  doi: 10.1038/nchem.2470

    16. [16]

      Sakuda, A.; Sato, Y.; Hayashi, A.; Tatsumisago, M. Energy Technol. 2019, 7, 1900077. doi: 10.1002/ente.201900077  doi: 10.1002/ente.201900077

    17. [17]

      Shen, Y. Q.; Zeng, F. L.; Zhou, X. Y.; Wang, A. B.; Wang, W. K.; Yuan, N. Y.; Ding, J. N. J. Energy Chem. 2020, 48, 267.doi: 10.1016/j.jechem.2020.01.016  doi: 10.1016/j.jechem.2020.01.016

    18. [18]

      Wu, J. Y.; Ling, S. G.; Yang, Q.; Li, H.; Xu, X. X.; Chen, L. Q. Chin. Phys. B 2016, 25, 078204. doi: 10.1088/1674-1056/25/7/078204  doi: 10.1088/1674-1056/25/7/078204

    19. [19]

      Yao, X. Y.; Huang, N.; Han, F. D.; Zhang, Q.; Wan, H. L.; Mwizerwa, J. P.; Wang, C. S.; Xu, X. X. Adv. Energy Mater. 2017, 7, 1602923. doi: 10.1002/aenm.201602923  doi: 10.1002/aenm.201602923

    20. [20]

      Zhang, H.; Judez, X.; Santiago, A.; Martinez-Ibanez, M.; Munoz-Marquez, M. A.; Carrasco, J.; Li, C. M.; Eshetu, G. G.; Armand, M. Adv. Energy Mater. 2019, 9, 1900763. doi: 10.1002/aenm.201900763  doi: 10.1002/aenm.201900763

    21. [21]

      Xu, R.; Zhang, S.; Wang, X.; Xia, Y.; Xia, X.; Wu, J.; Gu, C.; Tu, J. Chem. -A Eur. J. 2018, 24, 6007. doi: 10.1002/chem.201704568  doi: 10.1002/chem.201704568

    22. [22]

      Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q. Zhang, Q. Proc. Natl. Acad. Sci. 2017, 114, 11069. doi: 10.1073/pnas.1708489114  doi: 10.1073/pnas.1708489114

    23. [23]

      Hou, L. P.; Yuan, H.; Zhao, C. Z.; Xu, L.; Zhu, G. L.; Nan, H. X.; Cheng, X. B.; Liu, Q. B.; He, C. X.; Huang, J. Q.; Zhang, Q. Energy Storage Mater. 2019, 25, 436. doi: 10.1016/j.ensm.2019.09.037  doi: 10.1016/j.ensm.2019.09.037

    24. [24]

      Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P. Zhu, H. L. Adv. Mater. 2019, 31, 1901131. doi: 10.1002/adma.201901131  doi: 10.1002/adma.201901131

    25. [25]

      Zhang, Y. B.; Chen, R. J.; Wang, S.; Liu, T.; Xu, B. Q.; Zhang, X.; Wang, X. Z.; Shen, Y.; Lin, Y. H.; Li, M.; et al. Energy Storage Mater. 2020, 25, 145. doi: 10.1016/j.ensm.2019.10.020  doi: 10.1016/j.ensm.2019.10.020

    26. [26]

      Zhang, Y. B.; Liu, T.; Zhang, Q. H.; Zhang, X.; Wang, S.; Wang, X. Z.; Li, L. L.; Fan, L. Z.; Nan, C. W.; Shen, Y. J. Mater. Chem. A 2018, 6, 23345. doi: 10.1039/c8ta08420c  doi: 10.1039/c8ta08420c

    27. [27]

      Jin, C. Q.; Xie, K.; Hong, X. B. Acta Chim. Sin. 2014, 72, 11. doi: 10.6023/A13101097  doi: 10.6023/A13101097

    28. [28]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    29. [29]

      Yan, M.; Liang, J. Y.; Zuo, T. T.; Yin, Y. X.; Xin, S.; Tan, S. J.; Guo, Y. G.; Wan, L. J. Adv. Funct. Mater. 2020, 30, 1908047. doi: 10.1002/adfm.201908047  doi: 10.1002/adfm.201908047

    30. [30]

      Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J. G.; Choi, N. S.; Jung, Y. S. J. Mater. Chem. A 2017, 5, 20771. doi: 10.1039/c7ta06873e  doi: 10.1039/c7ta06873e

    31. [31]

      Chen, L.; Fan, L. Z. Energy Storage Mater. 2018, 15, 37. doi: 10.1016/j.ensm.2018.03.015  doi: 10.1016/j.ensm.2018.03.015

    32. [32]

      Fan, Z.; Ding, B.; Zhang, T.; Lin, Q.; Malgras, V.; Wang, J.; Dou, H.; Zhang, X.; Yamauchi, Y. Small 2019, 15, 1903952. doi: 10.1002/smll.201903952  doi: 10.1002/smll.201903952

    33. [33]

      Gao, Z.; Zhang, S.; Huang, Z.; Lu, Y.; Wang, W.; Wang, K.; Li, J.; Zhou, Y.; Huang, L.; Sun, S. Chin. Chem. Lett. 2019, 30, 525. doi: 10.1016/j.cclet.2018.05.016  doi: 10.1016/j.cclet.2018.05.016

    34. [34]

      Jiang, J. H.; Wang, A. B.; Wang, W. K.; Jin, Z. Q.; Fan, L. Z. J. Energy Chem. 2020, 46, 114. doi: 10.1016/j.jechem.2019.10.009  doi: 10.1016/j.jechem.2019.10.009

    35. [35]

      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1, 16030. doi: 10.1038/nenergy.2016.30  doi: 10.1038/nenergy.2016.30

    36. [36]

      Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Angew. Chem. Int. Ed. 2008, 47, 755. doi: 10.1002/anie.200703900  doi: 10.1002/anie.200703900

    37. [37]

      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066  doi: 10.1038/nmat3066

    38. [38]

      Manalastas, W.; Rikarte, J.; Chater, R. J.; Brugge, R.; Aguadero, A.; Buannic, L.; Llordés, A.; Aguesse, F.; Kilner, J. J. Power Sources 2019, 412, 287. doi: 10.1016/j.jpowsour.2018.11.041  doi: 10.1016/j.jpowsour.2018.11.041

    39. [39]

      Xu, X. X.; Qiu, Z. J.; Guan, Y. B.; Huang, Z.; Jin, Y. Energy Storage Sci. Technology 2013, 2, 332.  doi: 10.3969/j.issn.2095-4239.2013.04.001

    40. [40]

      He, M.; Cui, Z.; Han, F.; Guo, X. J. Alloy. Compd. 2018, 762, 157. doi: 10.1016/j.jallcom.2018.05.255  doi: 10.1016/j.jallcom.2018.05.255

    41. [41]

      Chen, W.; Lei, T.; Wu, C.; Deng, M.; Gong, C.; Hu, K.; Ma, Y.; Dai, L.; Lv, W.; He, W.; et al. Adv. Energy Mater. 2018, 8, 1702348. doi: 10.1002/aenm.201702348  doi: 10.1002/aenm.201702348

    42. [42]

      Miura, A.; Rosero-Navarro, N. C.; Sakuda, A.; Tadanaga, K.; Phuc, N. H. H.; Matsuda, A.; Machida, N.; Hayashi, A. Tatsumisago, M. Nat. Rev. Chem. 2019, 3, 189. doi: 10.1038/s41570-019-0078-2  doi: 10.1038/s41570-019-0078-2

    43. [43]

      Liang, Y.; Zhang, W.; Wu, D.; Ni, Q. Q.; Zhang, M. Q. Adv. Mater. Interfaces 2018, 5, 1800430. doi: 10.1002/admi.201800430  doi: 10.1002/admi.201800430

    44. [44]

      Zhang, Q.; Ding, Z.; Liu, G.; Wan, H.; Mwizerwa, J. P.; Wu, J.; Yao, X. Energy Storage Mater. 2019, 23, 168. doi: 10.1016/j.ensm.2019.05.015  doi: 10.1016/j.ensm.2019.05.015

    45. [45]

      Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Chem. Rev. 2019, doi: 10.1021/acs.chemrev.9b00268  doi: 10.1021/acs.chemrev.9b00268

    46. [46]

      Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M.J. Power Sources 2014, 248, 939. doi: 10.1016/j.jpowsour.2013.09.117  doi: 10.1016/j.jpowsour.2013.09.117

    47. [47]

      Tsukasaki, H.; Mori, Y.; Otoyama, M.; Yubuchi, S.; Asano, T.; Tanaka, Y.; Ohno, T.; Mori, S.; Hayashi, A.; Tatsumisago, M. Sci. Rep. 2018, 8, 6214. doi: 10.1038/s41598-018-24524-7  doi: 10.1038/s41598-018-24524-7

    48. [48]

      Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Nat. Commun. 2012, 3, 856. doi: 10.1038/ncomms1843  doi: 10.1038/ncomms1843

    49. [49]

      Jin, F., Li. J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.  doi: 10.3866/PKU.WHXB201904085

    50. [50]

      Fei, H. F.; Liu, Y. P.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Chen, C. Z.; Yu, H. J. Acta Phys. -Chim. Sin. 2020, 36, 1905015.  doi: 10.3866/PKU.WHXB201905015

    51. [51]

      Yuan, H.; Nan, H. X.; Zhao, C. Z.; Zhu, G. L.; Lu, Y.; Cheng, X. B.; Liu, Q. B.; He, C. X.; Huang, J. Q.; Zhang, Q. Batteries & Supercaps 2020. doi: 10.1002/batt.202000051

    52. [52]

      Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C.; Zhang, J.; Chen, S.; Xu, L.; Yuan, H.; Zhang, Q. Small 2019, 15, 1805389. doi: 10.1002/smll.201805389  doi: 10.1002/smll.201805389

    53. [53]

      Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y. C.; Wei, F.; Mai, L. Joule 2018, 2, 1991. doi: 10.1016/j.joule.2018.07.009  doi: 10.1016/j.joule.2018.07.009

    54. [54]

      Wenzel, S.; Weber, D. A.; Leichtweiss, T.; Busche, M. R.; Sann, J.; Janek, J. Solid State Ionics 2016, 286, 24. doi: 10.1016/j.ssi.2015.11.034  doi: 10.1016/j.ssi.2015.11.034

    55. [55]

      Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Solid State Ionics 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001  doi: 10.1016/j.ssi.2015.06.001

    56. [56]

      Swamy, T.; Chen, X.; Chiang, Y. M. Chem. Mater. 2019, 31, 707. doi: 10.1021/acs.chemmater.8b03420  doi: 10.1021/acs.chemmater.8b03420

    57. [57]

      Zhang, Q.; Huang, N.; Huang, Z.; Cai, L.; Wu, J.; Yao, X. J. Energy Chem. 2020, 40, 151. doi: 10.1016/j.jechem.2019.03.006  doi: 10.1016/j.jechem.2019.03.006

    58. [58]

      Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X.; Yang, H.; Banerjee, A. Meng, Y. S. ACS Energy Lett. 2019, 4, 2418. doi: 10.1021/acsenergylett.9b01693  doi: 10.1021/acsenergylett.9b01693

    59. [59]

      Sang, L.; Haasch, R. T.; Gewirth, A. A.; Nuzzo, R. G. Chem. Mater. 2017, 29, 3029. doi: 10.1021/acs.chemmater.7b00034  doi: 10.1021/acs.chemmater.7b00034

    60. [60]

      Zhang, W.; Leichtweiß, T.; Culver, S. P.; Koerver, R.; Das, D.; Weber, D. A.; Zeier, W. G.; Janek, J. ACS Appl. Mater. Interfaces 2017, 9, 35888. doi: 10.1021/acsami.7b11530  doi: 10.1021/acsami.7b11530

    61. [61]

      Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S. Adv. Energy Mater. 2019, 10, 1903253. doi: 10.1002/aenm.201903253  doi: 10.1002/aenm.201903253

    62. [62]

      Zhao, C. Z.; Zhao, B. C.; Yan, C.; Zhang, X.Q.; Huang, J. Q.; Mo, Y.; Xu, X.; Li, H.; Zhang, Q. Energy Storage Mater. 2019, 24, 75. doi: 10.1016/j.ensm.2019.07.026  doi: 10.1016/j.ensm.2019.07.026

    63. [63]

      Liu, H.; Cheng, X. B.; Huang, J. Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G. L.; Xu, R.; Zhao, C. Z.; Hou, L.P.; et al. ACS Energy Lett. 2020, 5, 833. doi: 10.1021/acsenergylett.9b02660  doi: 10.1021/acsenergylett.9b02660

  • 加载中
    1. [1]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    2. [2]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    14. [14]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    19. [19]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(13)
  • Abstract views(650)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return