Engineering of Bifunctional Nickel Phosphide@Ni-N-C Catalysts for Selective Electroreduction of CO2-H2O to Syngas
- Corresponding author: Guangping Hao, guangpinghao@dlut.edu.cn Anhui Lu, anhuilu@dlut.edu.cn
Citation: Chengyu Ye, Xiaofei Yu, Wencui Li, Lei He, Guangping Hao, Anhui Lu. Engineering of Bifunctional Nickel Phosphide@Ni-N-C Catalysts for Selective Electroreduction of CO2-H2O to Syngas[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200405. doi: 10.3866/PKU.WHXB202004054
Lindsey, R. Climate Change: Atmospheric Carbon Dioxide. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.
Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Adv. Mater. 2010, 22, 853. doi: 10.1002/adma.200903765
doi: 10.1002/adma.200903765
Hao, G. P.; Jin, Z. Y.; Sun, Q.; Zhang, X. Q.; Zhang, J. T.; Lu, A. H. Energy Environ. Sci. 2013, 6, 3740. doi: 10.1039/C3EE41906A
doi: 10.1039/C3EE41906A
Jin, Z. Y.; Xu, Y. Y.; Sun, Q.; Lu, A. H. Small 2015, 11, 5151. doi: 10.1002/smll.201501692
doi: 10.1002/smll.201501692
Hao, G. P.; Li, W. C.; Qian, D.; Wang, G. H.; Zhang, W. P.; Zhang, T.; Wang, A. Q.; Schuth, F.; Bongard, H. J.; Lu, A. H. J. Am. Chem. Soc. 2011, 133, 11378. doi: 10.1021/ja203857g
doi: 10.1021/ja203857g
Singh, G.; Lakhi, K. S.; Ramadass, K.; Sathish, C. I.; Vinu, A. ACS Sustain. Chem. Eng. 2019, 7, 7412. doi: 10.1021/acssuschemeng.9b00921
doi: 10.1021/acssuschemeng.9b00921
Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514
doi: 10.1021/acs.iecr.7b03514
Diaz, L. A.; Gao, N.; Adhikari, B.; Lister, T. E.; Dufek, E. J.; Wilson, A. D. Green Chem. 2018, 20, 620. doi: 10.1039/C7GC03069J
doi: 10.1039/C7GC03069J
Hernández, S.; Farkhondehfal, M. A.; Sastre, F.; Makkee, M.; Saracco, G.; Russo, N. Green Chem. 2017, 19, 2326. doi: 10.1039/C7GC00398F
doi: 10.1039/C7GC00398F
Song, X.; Zhang, H.; Yang, Y.; Zhang, B.; Zuo, M.; Cao, X.; Sun, J.; Lin, C.; Li, X.; Jiang, Z. Adv. Sci. 2018, 5, 1800177. doi: 10.1002/advs.201800177
doi: 10.1002/advs.201800177
Ross, M. B.; Li, Y.; Luna, P. D.; Kim, D.; Sargent, E. H.; Yang, P. Joule 2019, 3, 257. doi: 10.1016/j.joule.2018.09.013
doi: 10.1016/j.joule.2018.09.013
Yang, D.; Zhu, Q.; Sun, X.; Chen, C.; Guo, W.; Yang, G.; Han, B. Angew. Chem. Int. Ed. 2020, 6, 2354. doi: 10.1002/anie.201914831
doi: 10.1002/anie.201914831
He, R.; Zhang, A.; Ding, Y.; Kong, T.; Xiao, Q.; Li, H.; Liu, Y.; Zeng, J. Adv. Mater. 2018, 30, 1705872. doi: 10.1002/adma.201705872
doi: 10.1002/adma.201705872
Ross, M. B.; Dinh, C. T.; Li, Y.; Kim, D.; Luna, P. D.; Sargent, E. H.; Yang, P. J. Am. Chem. Soc. 2017, 139, 9359. doi: 10.1021/jacs.7b04892
doi: 10.1021/jacs.7b04892
Daiyan, R.; Chen, R.; Kumar, P. V.; Bedford, N. M.; Qu, J.; Cairney, J. M.; Lu, X.; Amal, R. ACS Appl. Mater. Interfaces 2020, 12, 9307. doi: 10.1021/acsami.9b21216
doi: 10.1021/acsami.9b21216
Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z.; Yao, S.; Tackett, B. M.; Xu, W.; Marinkovic, N. S.; Chen, J. G. Nat. Commun. 2019, 10, 3724. doi: 10.1038/s41467-019-11352-0
doi: 10.1038/s41467-019-11352-0
Hjorth, I.; Nord, M.; Rønning, M.; Yang, J.; Chen, D. Catal. Today 2019, doi: 10.1016/j.cattod.2019.02.045
doi: 10.1016/j.cattod.2019.02.045
Chen, H.; Li, Z.; Zhang, Z.; Jie, K.; Li, J.; Li, H.; Mao, S.; Wang, D.; Lu, X.; Fu, J. Ind. Eng. Chem. Res. 2019, 58, 15425. doi: 10.1021/acs.iecr.9b02192
doi: 10.1021/acs.iecr.9b02192
Mota, M. F.; Nguyen, D. L. T.; Lee, J. E.; Piao, H.; Choy, J. H.; Hwang, Y. J.; Kim, D. H. ACS Catal. 2018, 8, 4364. doi: 10.1021/acscatal.8b00647
doi: 10.1021/acscatal.8b00647
Farkhondehfal, M. A.; Hernández, S.; Rattalino, M.; Makkee, M.; Lamberti, A.; Chiodoni, A.; Bejtka, K.; Sacco, A.; Pirri, F. C.; Russo, N. Int. J. Hydrogen Energy 2019, doi: 10.1016/j.ijhydene.2019.04.180
doi: 10.1016/j.ijhydene.2019.04.180
Li, H.; Xiao, N.; Wang, Y.; Li, C.; Ye, X.; Guo, Z.; Pan, X.; Liu, C.; Bai J.; Xiao, J. et al. J. Mater. Chem. A 2019, 7, 18852. doi: 10.1039/C9TA05904K
doi: 10.1039/C9TA05904K
Vasileff, A.; Zheng, Y.; Qiao, S. Z. Adv. Energy Mater. 2017, 7, 1700759. doi: 10.1002/aenm.201700759
doi: 10.1002/aenm.201700759
Zhang, W.; Zeng, J.; Liu, H.; Shi, Z.; Tang, Y.; Gao, Q. J. Catal. 2019, 372, 277. doi: 10.1016/j.jcat.2019.03.014
doi: 10.1016/j.jcat.2019.03.014
Ning, H.; Wang, W.; Mao, Q.; Zheng, S.; Yang, Z.; Zhao, Q.; Wu, M. Acta Phys. -Chim. Sin. 2018, 34, 938.
doi: 10.3866/PKU.WHXB201801263
Chen, Z.; Mou, K.; Yao, S.; Liu, L. ChemSusChem 2018, 11, 2944. doi: 10.1002/cssc.201800925
doi: 10.1002/cssc.201800925
Ning, M.; Li, J.; Kuang, B.; Wang, C.; Su, D.; Zhao, Y.; Jin, H.; Cao, M. Appl. Surf. Sci. 2018, 447, 244. doi: 10.1016/j.apsusc.2018.03.242
doi: 10.1016/j.apsusc.2018.03.242
Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. Angew. Chem. Int. Ed. 2018, 57, 12303. doi: 10.1002/anie.201805871
doi: 10.1002/anie.201805871
Hu, X. M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M.; et al. ACS Catal. 2018, 8, 6255. doi: 10.1021/acscatal.8b01022
doi: 10.1021/acscatal.8b01022
Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. ACS Catal. 2019, 9, 7270. doi: 10.1021/acscatal.9b01405
doi: 10.1021/acscatal.9b01405
Wang, X.; Pan, Y.; Ning, H.; Wang, H.; Guo, D.; Wang, W.; Yang, Z.; Zhao, Q.; Zhang B.; Zheng, L.; et al. Appl. Catal. B: Environ. 2020, 266, 118630. doi: 10.1016/j.apcatb.2020.118630
doi: 10.1016/j.apcatb.2020.118630
Möller, T.; Ju, W.; Bagger, A.; Wang, X.; Luo, F.; Thanh, T. N.; Varela, A. S.; Rossmeisl, J.; Strasser, P. Energy Environ. Sci. 2019, 12, 640. doi: 10.1039/c8ee02662a
doi: 10.1039/c8ee02662a
Xie, A.; Zhang, J.; Tao, X.; Zhang, J.; Wei, B.; Peng, W.; Tao, Y.; Luo, S. Electrochim. Acta 2019, 324, 134814. doi: 10.1016/j.electacta.2019.134814
doi: 10.1016/j.electacta.2019.134814
Li, X.; Bi W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.; et al. J. Am. Chem. Soc. 2017, 139, 14889. doi: 10.1021/jacs.7b09074
doi: 10.1021/jacs.7b09074
Yuan, C. Z.; Liang, K.; Xia, X. M.; Yang, Z. K.; Jiang, Y. F.; Zhao, T.; Lin, C.; Cheang, T. Y.; Zhong, S. L.; Xu, A. W. Catal. Sci. Technol. 2019, 9, 3669. doi: 10.1039/c9cy00363k
doi: 10.1039/c9cy00363k
Wang, X.; Zhao, Q.; Yang, B.; Li, Z.; Bo, Z.; Lam, K. H.; Adli, N. M.; Lei, L.; Wen, Z.; Wu, G.; et al. J. Mater. Chem. A 2019, 7, 25191. doi: 10.1039/c9ta09681g
doi: 10.1039/c9ta09681g
Koshy, D. M.; Chen, S.; Lee, D. U.; Stevens, M. B.; Abdellah, A. M.; Dull, S. M.; Chen, G.; Nordlund, D.; Gallo, A.; Hahn, C.; et al. Angew. Chem. Int. Ed. 2020, 59, 4043. doi: 10.1002/anie.201912857
doi: 10.1002/anie.201912857
Yang, H.; Lin, Q.; Zhang, C.; Yu, X.; Cheng, Z.; Li, G.; Hu, Q.; Ren, X.; Zhang, Q.; Liu, J.; et al. Nat. Commun. 2020, 11, 593. doi: 10.1038/s41467-020-14402-0
doi: 10.1038/s41467-020-14402-0
Daems, N.; Mot, B. D.; Choukroun, D.; Daele, K. V.; Li, C.; Hubin, A.; Bals, S.; Hereijgers, J.; Breugelmans, T. Sustain. Energy Fuels 2020, 4, 1296. doi: 10.1039/c9se00814d
doi: 10.1039/c9se00814d
Daiyan, R.; Lu, X.; Tan, X.; Zhu, X.; Chen, R.; Smith, S. C.; Amal, R. ACS Appl. Energy Mater. 2019, 2, 8002. doi: 10.1021/acsaem.9b01470
doi: 10.1021/acsaem.9b01470
Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z
doi: 10.1038/s41467-017-01035-z
Zhao, S.; Cheng, Y.; Veder, J. P.; Johannessen, B.; Saunders, M.; Zhang, L.; Liu, C.; Chisholm, M. F.; Marco, R. D.; Liu, J.; et al. ACS Appl. Energy Mater. 2018, 1, 5286. doi: 10.1021/acsaem.8b00903
doi: 10.1021/acsaem.8b00903
Lin, Z.; Shen, L.; Qu, X.; Zhang, J.; Jiang, Y.; Sun, S. Acta Phys. -Chim. Sin. 2019, 35, 523.
doi: 10.3866/PKU.WHXB201806191
Diao, J.; Qiu, Y.; Liu, S.; Wang, W.; Chen, K.; Li, H.; Yuan, W.; Qu, Y.; Guo, X. Adv. Mater. 2019, 32, 1905679. doi: 10.1002/adma.201905679
doi: 10.1002/adma.201905679
Song, Y. J.; Yuan, Z. Y. Electrochim. Acta 2017, 246, 536. doi: 10.1016/j.electacta.2017.06.086
doi: 10.1016/j.electacta.2017.06.086
Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13, 1135. doi: 10.1038/NMAT4091
doi: 10.1038/NMAT4091
Attanayake, N. H.; Abeyweera, S. C.; Thenuwara, A. C.; Anasori, B.; Gogotsi, Y.; Sun, Y.; Strongin, D. R. J. Mater. Chem. A 2018, 6, 16882. doi: 10.1039/c8ta05033c
doi: 10.1039/c8ta05033c
Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136, 28, 10053. doi: 10.1021/ja504099w
doi: 10.1021/ja504099w
Yang, J. Acta Phys. -Chim. Sin. 2018, 34, 453.
doi: 10.3866/PKU.WHXB201710272
Zhou, Z.; Mahmood, N.; Zhang, Y.; Pan, L.; Wang, L.; Zang, X.; Zou, J. J. J. Energy Chem. 2017, 26, 1223. doi: 10.1016/j.jechem.2017.07.021
doi: 10.1016/j.jechem.2017.07.021
Chang, J. F.; Xiao, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32, 1556.
doi: 10.3866/PKU.WHXB201604291
Zeng, L.; Sun, K.; Wang, X.; Liu, Y.; Pan, Y.; Liu, Z.; Cao, D.; Song, Y.; Liu, S.; Liu, C. Nano Energy 2018, 51, 26. doi: 10.1016/j.nanoen.2018.06.048
doi: 10.1016/j.nanoen.2018.06.048
Yu, L.; Zhang, J.; Dang, Y.; He, J.; Tobin, Z.; Kerns, P.; Dou, Y.; Jiang, Y.; He, Y.; Suib, S. L. ACS Catal. 2019, 9, 6919. doi: 10.1021/acscatal.9b00494
doi: 10.1021/acscatal.9b00494
Wang, Y.; Liu, L.; Zhang, X.; Yan, F.; Zhu, C.; Chen, Y. J. Mater. Chem. A 2019, 7, 22412. doi: 10.1039/c9ta07859b
doi: 10.1039/c9ta07859b
Shi, Y.; Zhang, B. Chem. Soc. Rev. 2016, 45, 1529. doi: 10.1039/c5cs00434a
doi: 10.1039/c5cs00434a
Yu, X. F.; Tian, D. X.; Li, W. C.; He, B.; Zhang, Y.; Chen, Z. Y.; Lu, A. H. Nano Res. 2019, 12, 1193. doi: 10.1007/s12274-019-2381-0
doi: 10.1007/s12274-019-2381-0
Wang, Z.; Ogata, H.; Morimoto, S.; Ortiz-Medina, J.; Fujishige, M.; Takeuchi, K.; Muramatsu, H.; Hayashi, T.; Terrones, M.; Hashimoto, Y.; et al. Carbon 2015, 94, 479. doi: 10.1016/j.carbon.2015.07.037
doi: 10.1016/j.carbon.2015.07.037
Atchudan, R.; Joo, J.; Pandurangan, A. Mater. Res. Bull. 2013, 48, 2205. doi: 10.1016/j.materresbull.2013.02.048
doi: 10.1016/j.materresbull.2013.02.048
Zhao, C.; Wang, Y.; Li, Z.; Chen, W.; Xu, Q.; He, D.; Xi, D.; Zhang, Q.; Yuan, T.; Qu, Y.; et al. Joule 2019, 3 (2), 584. doi: 10.1016/j.joule.2018.11.008
doi: 10.1016/j.joule.2018.11.008
Wang, F.; Liu, Y. M.; Zhang, C. Y. New J. Chem. 2019, 43, 4160. doi: 10.1039/c9nj00059c
doi: 10.1039/c9nj00059c
Zhang, Y.; Liu, Y.; Ma, M.; Ren, X.; Liu, Z.; Du, G.; Asiri, A. M.; Sun, X. Chem. Commun. 2017, 53, 11048. doi: 10.1039/c7cc06278h
doi: 10.1039/c7cc06278h
Zhang, W.; Zheng, J.; Gu, X.; Tang, B.; Li, J.; Wang, X. Nanoscale 2019, 11, 9353. doi: 10.1039/c8nr08039a
doi: 10.1039/c8nr08039a
Wan, H.; Li, L.; Chen, Y.; Gong, J.; Duan, M.; Liu, C.; Zhang, J.; Wang, H. Electrochim. Acta 2017, 229, 380. doi: 10.1016/j.electacta.2017.01.169
doi: 10.1016/j.electacta.2017.01.169
Yuan, C. Z.; Li, H. B.; Jiang, Y. F.; Liang, K.; Zhao, S. J.; Fang, X. X.; Ma, L. B.; Zhao, T.; Lin, C.; Xu, A. W. J. Mater. Chem. A 2019, 7, 6894. doi: 10.1039/c8ta11500a
doi: 10.1039/c8ta11500a
Edwards, J. P.; Xu, Y.; Gabardo, C. M.; Dinh, C. T.; Li, J.; Qi, Z.; Ozden, A.; Sargent, E. H.; Sinton, D. Appl. Energy 2020, 261, 114305. doi: 10.1016/j.apenergy.2019.114305
doi: 10.1016/j.apenergy.2019.114305
Chen, C.; Khosrowabadi, J. F. K.; Sheehan, S. W. Chem 2018, 4, 2571. doi: 10.1016/j.chempr.2018.08.019
doi: 10.1016/j.chempr.2018.08.019
He, Q.; Liu, D.; Lee, J. H.; Liu, Y.; Xie, Z.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Angew. Chem. Int. Ed. 2020, 59, 3033. doi: 10.1002/anie.201912719
doi: 10.1002/anie.201912719
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Jun-Ming Cao , Kai-Yang Zhang , Jia-Lin Yang , Zhen-Yi Gu , Xing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342