Citation: Zhang Yue-Jiao, Zhu Yue-Zhou, Li Jian-Feng. Application of Raman Spectroscopy in Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200405. doi: 10.3866/PKU.WHXB202004052 shu

Application of Raman Spectroscopy in Fuel Cell

  • Corresponding author: Li Jian-Feng, li@xmu.edu.cn
  • Received Date: 17 April 2020
    Revised Date: 22 May 2020
    Accepted Date: 31 May 2020
    Available Online: 4 June 2020

    Fund Project: the National Natural Science Foundation of China 21775127the Science and Technology Planning Project of Fujian Province, China 2019Y4001The project was supported by the National Natural Science Foundation of China (21925404, 21775127) and the Science and Technology Planning Project of Fujian Province, China (2019Y4001)the National Natural Science Foundation of China 21925404

  • Recently, the problems of environmental pollution and energy shortages arise along with the rapid development of the economy, and gradually becoming significant challenges faced by society. To realize truly sustainable development, novel environment-friendly clean energy technologies need to be developed. The fuel cell is a chemical device that can directly convert the chemical energy of a fuel and an oxidant into electrical energy via an electrochemical reaction. The electrochemical reaction is usually clean and complete, and rarely produces harmful substances. Therefore, fuel cells are considered to be one of the most promising clean energy technologies. Fuel cells can be classified based on their electrolytes: alkaline fuel cells (AFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Although there have been many studies regarding the materials and reactions of fuel cells, direct spectroscopic evidence to understand the reaction mechanisms in the electrodes is lacking. Raman spectroscopy, as a non-destructive molecular spectroscopy technique with ultra-high sensitivity, is suitable for studying fuel cell materials. Over the past decade, the development of surface-enhanced Raman spectroscopy (SERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) has overcome the material and morphology limitations of traditional Raman spectroscopy. The extraordinary progress in SHINERS has enabled researchers to acquire high-quality Raman spectra for many types of materials instead of only on the surface of noble metals such as Au, Ag, and Cu. This strategy can also be applied to trace intermediate reactants on electrodes to fully understand the reaction mechanism of the fuel cell. Although many kinds of characterization methods including X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and X-ray diffraction (XRD) also exhibit excellent sensitivity for studying electrode reactions, they require material pretreatments and long-duration experiments. Compared with the abovementioned methods, SERS and SHINERS show better performance for in situ experiments, which will aid in the rational design of catalysts and electrode materials with higher efficiency. This article provides an overview of the basic concepts of fuel cells, as well as SERS and SHINERS. In addition, the application of Raman spectroscopy, SERS, and SHINERS in fuel cell development is discussed along with future prospects.
  • 加载中
    1. [1]

      Wilberforce, T.; El-Hassan, Z.; Khatib, F. N.; Al Makky, A.; Baroutaji, A.; Carton, J. G.; Olabi, A. G. Int. J. Hydrogen Energy 2017, 42, 25695. doi: 10.1016/j.ijhydene.2017.07.054  doi: 10.1016/j.ijhydene.2017.07.054

    2. [2]

      Wilberforce, T.; Alaswad, A.; Palumbo, A.; Dassisti, M.; Olabi, A. G. Int. J. Hydrogen Energy 2016, 41, 16509. doi: 10.1016/j.ijhydene.2016.02.057  doi: 10.1016/j.ijhydene.2016.02.057

    3. [3]

      Alaswad, A.; Baroutaji, A.; Achour, H.; Carton, J.; Al Makky, A.; Olabi, A. G. Int. J. Hydrogen Energy 2016, 41, 16499. doi: 10.1016/j.ijhydene.2016.03.164  doi: 10.1016/j.ijhydene.2016.03.164

    4. [4]

      Majlan, E. H.; Rohendi, D.; Daud, W. R. W.; Husaini, T.; Haque, M. A. Renew. Sust. Energy Rev. 2018, 89, 117. doi: 10.1016/j.rser.2018.03.007  doi: 10.1016/j.rser.2018.03.007

    5. [5]

      Brandon, N. P.; Skinner, S.; Steele, B. C. H. Ann. Rev. Mater. Res. 2003, 33, 183. doi: 10.1146/annurev.matsci.33.022802.094122  doi: 10.1146/annurev.matsci.33.022802.094122

    6. [6]

      Sung, S. S.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 578. doi: 10.1021/ja00289a009  doi: 10.1021/ja00289a009

    7. [7]

      Anderson, A. B. Electrochim. Acta 2002, 47, 3759. doi: 10.1016/S0013-4686(02)00346-8  doi: 10.1016/S0013-4686(02)00346-8

    8. [8]

      Damjanovic, A.; Dey, A.; Bockris, J. O. M. Electrochim. Acta 1966, 11, 791. doi: 10.1016/0013-4686(66)87056-1  doi: 10.1016/0013-4686(66)87056-1

    9. [9]

      Damjanovic, A.; Brusic, V. Electrochim. Acta 1967, 12, 615. doi: 10.1016/0013-4686(67)85030-8  doi: 10.1016/0013-4686(67)85030-8

    10. [10]

      Wei, C.; Rao, R. R.; Peng, J.; Huang, B.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Adv. Mater. 2019, 31, 1806296. doi: 10.1002/adma.201806296  doi: 10.1002/adma.201806296

    11. [11]

      Wang, X. X.; Swihart, M. T.; Wu, G. Nat. Catal. 2019, 2, 578. doi: 10.1038/s41929-019-0304-9  doi: 10.1038/s41929-019-0304-9

    12. [12]

      Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Yang, Y.; Wu, D.; Guo, S. J. Acta Phys. -Chim. Sin. 2018, 34, 361.  doi: 10.3866/PKU.WHXB201708312

    13. [13]

      Chang, Q. W.; Xiao, F.; Xu, Y.; Shao, M. H. Acta Phys. -Chim. Sin. 2017, 33, 9.  doi: 10.3866/PKU.WHXB201609202

    14. [14]

      Itoh, T.; Abe, K.; Dokko, K.; Mohamedi, M.; Uchida, I.; Kasuya, A. J. Electrochem. Soc. 2004, 151, A2042. doi: 10.1149/1.1812735  doi: 10.1149/1.1812735

    15. [15]

      Itoh, T.; Maeda, T.; Kasuya, A. Faraday Discuss. 2006, 132, 95. doi: 10.1039/b506197k  doi: 10.1039/b506197k

    16. [16]

      Pomfret, M. B.; Owrutsky, J. C.; Walker, R. A. Annu. Rev. Anal. Chem. 2010, 3, 151. doi: 10.1146/annurev.anchem.111808.073641  doi: 10.1146/annurev.anchem.111808.073641

    17. [17]

      Maher, R. C.; Duboviks, V.; Offer, G. J.; Kishimoto, M.; Brandon, N. P.; Cohen, L. F. Fuel Cells 2013, 13, 455. doi: 10.1002/fuce.201200173  doi: 10.1002/fuce.201200173

    18. [18]

      Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2018, 4, 60. doi: 10.1038/s41560-018-0292-z  doi: 10.1038/s41560-018-0292-z

    19. [19]

      Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.; Cheng, J.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2019, 58, 16062. doi: 10.1002/anie.201908907  doi: 10.1002/anie.201908907

    20. [20]

      Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1. doi: 10.1016/S0022-0728(77)80224-6  doi: 10.1016/S0022-0728(77)80224-6

    21. [21]

      Lane, L. A.; Qian, X. M.; Nie, S. M. Chem. Rev. 2015, 115, 10489. doi: 10.1021/acs.chemrev.5b00265  doi: 10.1021/acs.chemrev.5b00265

    22. [22]

      Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Chem. Rev. 2017, 117, 5002. doi: 10.1021/acs.chemrev.6b00596  doi: 10.1021/acs.chemrev.6b00596

    23. [23]

      Nie, S.; Emory, S. R. Science 1997, 275, 1102. doi: 10.1126/science.275.5303.1102  doi: 10.1126/science.275.5303.1102

    24. [24]

      Xu, H. X.; Bjerneld, E. J.; Kall, M.; Borjesson, L. Phys. Rev. Lett. 1999, 83, 4357. doi: 10.1103/PhysRevLett.83.4357  doi: 10.1103/PhysRevLett.83.4357

    25. [25]

      Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun. 2007, 3514. doi: 10.1039/B616986D

    26. [26]

      Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; et al. Nature 2010, 464, 392. doi: 10.1038/nature08907  doi: 10.1038/nature08907

    27. [27]

      Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.; Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; et al. Nat. Protoc. 2013, 8, 52. doi: 10.1038/nprot.2012.141  doi: 10.1038/nprot.2012.141

    28. [28]

      Zhang, H.; Duan, S.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Acc. Chem. Res. 2020, doi: 10.1021/acs.accounts.9b00545

    29. [29]

      Wei, J.; Qin, S. N.; Liu, J. L.; Ruan, X. Y.; Guan, Z.; Yan, H.; Wei, D. Y.; Zhang, H.; Cheng, J.; Xu, H.; et al. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202000426

    30. [30]

      Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. Nat. Mater. 2019, 18, 697. doi: 10.1038/s41563-019-0356-x  doi: 10.1038/s41563-019-0356-x

    31. [31]

      Wang, C.; Chen, X.; Chen, T. M.; Wei, J.; Qin, S. N.; Zheng, J. F.; Zhang, H.; Tian, Z. Q.; Li, J. F. ChemCatChem 2020, 12, 75. doi: 10.1002/cctc.201901747  doi: 10.1002/cctc.201901747

    32. [32]

      Wang, Y. H.; Wei, J.; Radjenovic, P.; Tian, Z. Q.; Li, J. F. Anal. Chem. 2019, 91, 1675. doi: 10.1021/acs.analchem.8b05499  doi: 10.1021/acs.analchem.8b05499

    33. [33]

      Jiang, S. P. Int. J. Hydrogen Energy 2019, 44, 7448. doi: 10.1016/j.ijhydene.2019.01.212  doi: 10.1016/j.ijhydene.2019.01.212

    34. [34]

      Fan, L.; Zhu, B.; Su, P.C.; He, C. Nano Energy 2018, 45, 148. doi: 10.1016/j.nanoen.2017.12.044  doi: 10.1016/j.nanoen.2017.12.044

    35. [35]

      Abdalla, A. M.; Hossain, S.; Azad, A. T.; Petra, P. M. I.; Begum, F.; Eriksson, S. G.; Azad, A. K. Renew. Sust. Energy Rev. 2018, 82, 353. doi: 10.1016/j.rser.2017.09.046  doi: 10.1016/j.rser.2017.09.046

    36. [36]

      Hossain, S.; Abdalla, A. M.; Jamain, S. N. B.; Zaini, J. H.; Azad, A. K. Renew. Sust. Energy Rev. 2017, 79, 750. doi: 10.1016/j.rser.2017.05.147  doi: 10.1016/j.rser.2017.05.147

    37. [37]

      da Silva, F. S.; de Souza, T. M. Int. J. Hydrogen Energy 2017, 42, 26020. doi: 10.1016/j.ijhydene.2017.08.105  doi: 10.1016/j.ijhydene.2017.08.105

    38. [38]

      Gorte, R. J.; Vohs, J. M. Annu. Rev. Chem. Biomol. 2011, 2, 9. doi: 10.1146/annurev-chembioeng-061010-114148  doi: 10.1146/annurev-chembioeng-061010-114148

    39. [39]

      Shaikh, S. P. S.; Muchtar, A.; Somalu, M. R. Renew. Sust. Energy Rev. 2015, 51, 1. doi: 10.1016/j.rser.2015.05.069  doi: 10.1016/j.rser.2015.05.069

    40. [40]

      Connor, P. A.; Yue, X.; Savaniu, C. D.; Price, R.; Triantafyllou, G.; Cassidy, M.; Kerherve, G.; Payne, D. J.; Maher, R. C.; Cohen, L. F.; et al. Adv. Energy Mater. 2018, 8, 1800120. doi: 10.1002/aenm.201800120  doi: 10.1002/aenm.201800120

    41. [41]

      Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A. Int. J. Hydrogen Energy 2017, 42, 9293. doi: 10.1016/j.ijhydene.2016.06.211  doi: 10.1016/j.ijhydene.2016.06.211

    42. [42]

      Araya, S. S.; Zhou, F.; Liso, V.; Sahlin, S. L.; Vang, J. R.; Thomas, S.; Gao, X.; Jeppesen, C.; Kær, S. K. Int. J. Hydrogen Energy 2016, 41, 21310. doi: 10.1016/j.ijhydene.2016.09.024  doi: 10.1016/j.ijhydene.2016.09.024

    43. [43]

      Zhang, J.; Xie, Z.; Zhang, J.; Tang, Y.; Song, C.; Navessin, T.; Shi, Z.; Song, D.; Wang, H.; Wilkinson, D. P.; et al. J. Power Sources 2006, 160, 872. doi: 10.1016/j.jpowsour.2006.05.034  doi: 10.1016/j.jpowsour.2006.05.034

    44. [44]

      Zeis, R. Beilstein J. Nanotech. 2015, 6, 68. doi: 10.3762/bjnano.6.8  doi: 10.3762/bjnano.6.8

    45. [45]

      Mack, F.; Heissler, S.; Laukenmann, R.; Zeis, R. J. Power Sources 2014, 270, 627. doi: 10.1016/j.jpowsour.2014.06.171  doi: 10.1016/j.jpowsour.2014.06.171

    46. [46]

      Daletou, M. K.; Geormezi, M.; Vogli, E.; Voyiatzis, G. A.; Neophytides, S. G. J. Mater. Chem. A 2014, 2, 1117. doi: 10.1039/C3TA13335D  doi: 10.1039/C3TA13335D

    47. [47]

      Li, X.; Lee, J. P.; Blinn, K. S.; Chen, D.; Yoo, S.; Kang, B.; Bottomley, L. A.; El-Sayed, M. A.; Park, S.; Liu, M. Energy Environ. Sci. 2014, 7, 306. doi: 10.1039/c3ee42462f  doi: 10.1039/c3ee42462f

    48. [48]

      Li, X.; Blinn, K.; Chen, D.; Liu, M. Electro. Energy Rev. 2018, 1, 433. doi: 10.1007/s41918-018-0017-9  doi: 10.1007/s41918-018-0017-9

    49. [49]

      Chen, X.; Liang, M. M.; Xu, J.; Sun, H. L.; Wang, C.; Wei, J.; Zhang, H.; Yang, W. M.; Yang, Z. L.; Sun, J. J.; et al. Nanoscale 2020, 12, 5341. doi: 10.1039/C9NR10304J  doi: 10.1039/C9NR10304J

    50. [50]

      Gómez-Marín, A. M.; Feliu, J. M. ChemSusChem 2013, 6, 1091. doi: 10.1002/cssc.201200847  doi: 10.1002/cssc.201200847

    51. [51]

      Briega-Martos, V.; Herrero, E.; Feliu, J. M. Electrochim. Acta 2017, 241, 497. doi: 10.1016/j.electacta.2017.04.162  doi: 10.1016/j.electacta.2017.04.162

    52. [52]

      Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2020, 142, 715. doi: 10.1021/jacs.9b12803  doi: 10.1021/jacs.9b12803

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    10. [10]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    11. [11]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    12. [12]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    13. [13]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    14. [14]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    19. [19]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

Metrics
  • PDF Downloads(19)
  • Abstract views(1156)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return