Application of Raman Spectroscopy in Fuel Cell
- Corresponding author: Li Jian-Feng, li@xmu.edu.cn
Citation: Zhang Yue-Jiao, Zhu Yue-Zhou, Li Jian-Feng. Application of Raman Spectroscopy in Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200405. doi: 10.3866/PKU.WHXB202004052
Wilberforce, T.; El-Hassan, Z.; Khatib, F. N.; Al Makky, A.; Baroutaji, A.; Carton, J. G.; Olabi, A. G. Int. J. Hydrogen Energy 2017, 42, 25695. doi: 10.1016/j.ijhydene.2017.07.054
doi: 10.1016/j.ijhydene.2017.07.054
Wilberforce, T.; Alaswad, A.; Palumbo, A.; Dassisti, M.; Olabi, A. G. Int. J. Hydrogen Energy 2016, 41, 16509. doi: 10.1016/j.ijhydene.2016.02.057
doi: 10.1016/j.ijhydene.2016.02.057
Alaswad, A.; Baroutaji, A.; Achour, H.; Carton, J.; Al Makky, A.; Olabi, A. G. Int. J. Hydrogen Energy 2016, 41, 16499. doi: 10.1016/j.ijhydene.2016.03.164
doi: 10.1016/j.ijhydene.2016.03.164
Majlan, E. H.; Rohendi, D.; Daud, W. R. W.; Husaini, T.; Haque, M. A. Renew. Sust. Energy Rev. 2018, 89, 117. doi: 10.1016/j.rser.2018.03.007
doi: 10.1016/j.rser.2018.03.007
Brandon, N. P.; Skinner, S.; Steele, B. C. H. Ann. Rev. Mater. Res. 2003, 33, 183. doi: 10.1146/annurev.matsci.33.022802.094122
doi: 10.1146/annurev.matsci.33.022802.094122
Sung, S. S.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 578. doi: 10.1021/ja00289a009
doi: 10.1021/ja00289a009
Anderson, A. B. Electrochim. Acta 2002, 47, 3759. doi: 10.1016/S0013-4686(02)00346-8
doi: 10.1016/S0013-4686(02)00346-8
Damjanovic, A.; Dey, A.; Bockris, J. O. M. Electrochim. Acta 1966, 11, 791. doi: 10.1016/0013-4686(66)87056-1
doi: 10.1016/0013-4686(66)87056-1
Damjanovic, A.; Brusic, V. Electrochim. Acta 1967, 12, 615. doi: 10.1016/0013-4686(67)85030-8
doi: 10.1016/0013-4686(67)85030-8
Wei, C.; Rao, R. R.; Peng, J.; Huang, B.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Adv. Mater. 2019, 31, 1806296. doi: 10.1002/adma.201806296
doi: 10.1002/adma.201806296
Wang, X. X.; Swihart, M. T.; Wu, G. Nat. Catal. 2019, 2, 578. doi: 10.1038/s41929-019-0304-9
doi: 10.1038/s41929-019-0304-9
Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Yang, Y.; Wu, D.; Guo, S. J. Acta Phys. -Chim. Sin. 2018, 34, 361.
doi: 10.3866/PKU.WHXB201708312
Chang, Q. W.; Xiao, F.; Xu, Y.; Shao, M. H. Acta Phys. -Chim. Sin. 2017, 33, 9.
doi: 10.3866/PKU.WHXB201609202
Itoh, T.; Abe, K.; Dokko, K.; Mohamedi, M.; Uchida, I.; Kasuya, A. J. Electrochem. Soc. 2004, 151, A2042. doi: 10.1149/1.1812735
doi: 10.1149/1.1812735
Itoh, T.; Maeda, T.; Kasuya, A. Faraday Discuss. 2006, 132, 95. doi: 10.1039/b506197k
doi: 10.1039/b506197k
Pomfret, M. B.; Owrutsky, J. C.; Walker, R. A. Annu. Rev. Anal. Chem. 2010, 3, 151. doi: 10.1146/annurev.anchem.111808.073641
doi: 10.1146/annurev.anchem.111808.073641
Maher, R. C.; Duboviks, V.; Offer, G. J.; Kishimoto, M.; Brandon, N. P.; Cohen, L. F. Fuel Cells 2013, 13, 455. doi: 10.1002/fuce.201200173
doi: 10.1002/fuce.201200173
Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2018, 4, 60. doi: 10.1038/s41560-018-0292-z
doi: 10.1038/s41560-018-0292-z
Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.; Cheng, J.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2019, 58, 16062. doi: 10.1002/anie.201908907
doi: 10.1002/anie.201908907
Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1. doi: 10.1016/S0022-0728(77)80224-6
doi: 10.1016/S0022-0728(77)80224-6
Lane, L. A.; Qian, X. M.; Nie, S. M. Chem. Rev. 2015, 115, 10489. doi: 10.1021/acs.chemrev.5b00265
doi: 10.1021/acs.chemrev.5b00265
Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Chem. Rev. 2017, 117, 5002. doi: 10.1021/acs.chemrev.6b00596
doi: 10.1021/acs.chemrev.6b00596
Nie, S.; Emory, S. R. Science 1997, 275, 1102. doi: 10.1126/science.275.5303.1102
doi: 10.1126/science.275.5303.1102
Xu, H. X.; Bjerneld, E. J.; Kall, M.; Borjesson, L. Phys. Rev. Lett. 1999, 83, 4357. doi: 10.1103/PhysRevLett.83.4357
doi: 10.1103/PhysRevLett.83.4357
Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun. 2007, 3514. doi: 10.1039/B616986D
Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; et al. Nature 2010, 464, 392. doi: 10.1038/nature08907
doi: 10.1038/nature08907
Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.; Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; et al. Nat. Protoc. 2013, 8, 52. doi: 10.1038/nprot.2012.141
doi: 10.1038/nprot.2012.141
Zhang, H.; Duan, S.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Acc. Chem. Res. 2020, doi: 10.1021/acs.accounts.9b00545
Wei, J.; Qin, S. N.; Liu, J. L.; Ruan, X. Y.; Guan, Z.; Yan, H.; Wei, D. Y.; Zhang, H.; Cheng, J.; Xu, H.; et al. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202000426
Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. Nat. Mater. 2019, 18, 697. doi: 10.1038/s41563-019-0356-x
doi: 10.1038/s41563-019-0356-x
Wang, C.; Chen, X.; Chen, T. M.; Wei, J.; Qin, S. N.; Zheng, J. F.; Zhang, H.; Tian, Z. Q.; Li, J. F. ChemCatChem 2020, 12, 75. doi: 10.1002/cctc.201901747
doi: 10.1002/cctc.201901747
Wang, Y. H.; Wei, J.; Radjenovic, P.; Tian, Z. Q.; Li, J. F. Anal. Chem. 2019, 91, 1675. doi: 10.1021/acs.analchem.8b05499
doi: 10.1021/acs.analchem.8b05499
Jiang, S. P. Int. J. Hydrogen Energy 2019, 44, 7448. doi: 10.1016/j.ijhydene.2019.01.212
doi: 10.1016/j.ijhydene.2019.01.212
Fan, L.; Zhu, B.; Su, P.C.; He, C. Nano Energy 2018, 45, 148. doi: 10.1016/j.nanoen.2017.12.044
doi: 10.1016/j.nanoen.2017.12.044
Abdalla, A. M.; Hossain, S.; Azad, A. T.; Petra, P. M. I.; Begum, F.; Eriksson, S. G.; Azad, A. K. Renew. Sust. Energy Rev. 2018, 82, 353. doi: 10.1016/j.rser.2017.09.046
doi: 10.1016/j.rser.2017.09.046
Hossain, S.; Abdalla, A. M.; Jamain, S. N. B.; Zaini, J. H.; Azad, A. K. Renew. Sust. Energy Rev. 2017, 79, 750. doi: 10.1016/j.rser.2017.05.147
doi: 10.1016/j.rser.2017.05.147
da Silva, F. S.; de Souza, T. M. Int. J. Hydrogen Energy 2017, 42, 26020. doi: 10.1016/j.ijhydene.2017.08.105
doi: 10.1016/j.ijhydene.2017.08.105
Gorte, R. J.; Vohs, J. M. Annu. Rev. Chem. Biomol. 2011, 2, 9. doi: 10.1146/annurev-chembioeng-061010-114148
doi: 10.1146/annurev-chembioeng-061010-114148
Shaikh, S. P. S.; Muchtar, A.; Somalu, M. R. Renew. Sust. Energy Rev. 2015, 51, 1. doi: 10.1016/j.rser.2015.05.069
doi: 10.1016/j.rser.2015.05.069
Connor, P. A.; Yue, X.; Savaniu, C. D.; Price, R.; Triantafyllou, G.; Cassidy, M.; Kerherve, G.; Payne, D. J.; Maher, R. C.; Cohen, L. F.; et al. Adv. Energy Mater. 2018, 8, 1800120. doi: 10.1002/aenm.201800120
doi: 10.1002/aenm.201800120
Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A. Int. J. Hydrogen Energy 2017, 42, 9293. doi: 10.1016/j.ijhydene.2016.06.211
doi: 10.1016/j.ijhydene.2016.06.211
Araya, S. S.; Zhou, F.; Liso, V.; Sahlin, S. L.; Vang, J. R.; Thomas, S.; Gao, X.; Jeppesen, C.; Kær, S. K. Int. J. Hydrogen Energy 2016, 41, 21310. doi: 10.1016/j.ijhydene.2016.09.024
doi: 10.1016/j.ijhydene.2016.09.024
Zhang, J.; Xie, Z.; Zhang, J.; Tang, Y.; Song, C.; Navessin, T.; Shi, Z.; Song, D.; Wang, H.; Wilkinson, D. P.; et al. J. Power Sources 2006, 160, 872. doi: 10.1016/j.jpowsour.2006.05.034
doi: 10.1016/j.jpowsour.2006.05.034
Zeis, R. Beilstein J. Nanotech. 2015, 6, 68. doi: 10.3762/bjnano.6.8
doi: 10.3762/bjnano.6.8
Mack, F.; Heissler, S.; Laukenmann, R.; Zeis, R. J. Power Sources 2014, 270, 627. doi: 10.1016/j.jpowsour.2014.06.171
doi: 10.1016/j.jpowsour.2014.06.171
Daletou, M. K.; Geormezi, M.; Vogli, E.; Voyiatzis, G. A.; Neophytides, S. G. J. Mater. Chem. A 2014, 2, 1117. doi: 10.1039/C3TA13335D
doi: 10.1039/C3TA13335D
Li, X.; Lee, J. P.; Blinn, K. S.; Chen, D.; Yoo, S.; Kang, B.; Bottomley, L. A.; El-Sayed, M. A.; Park, S.; Liu, M. Energy Environ. Sci. 2014, 7, 306. doi: 10.1039/c3ee42462f
doi: 10.1039/c3ee42462f
Li, X.; Blinn, K.; Chen, D.; Liu, M. Electro. Energy Rev. 2018, 1, 433. doi: 10.1007/s41918-018-0017-9
doi: 10.1007/s41918-018-0017-9
Chen, X.; Liang, M. M.; Xu, J.; Sun, H. L.; Wang, C.; Wei, J.; Zhang, H.; Yang, W. M.; Yang, Z. L.; Sun, J. J.; et al. Nanoscale 2020, 12, 5341. doi: 10.1039/C9NR10304J
doi: 10.1039/C9NR10304J
Gómez-Marín, A. M.; Feliu, J. M. ChemSusChem 2013, 6, 1091. doi: 10.1002/cssc.201200847
doi: 10.1002/cssc.201200847
Briega-Martos, V.; Herrero, E.; Feliu, J. M. Electrochim. Acta 2017, 241, 497. doi: 10.1016/j.electacta.2017.04.162
doi: 10.1016/j.electacta.2017.04.162
Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2020, 142, 715. doi: 10.1021/jacs.9b12803
doi: 10.1021/jacs.9b12803
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033