Novel Carboxy-Functionalized PVP-CdS Nanopopcorns with Homojunctions for Enhanced Photocatalytic Hydrogen Evolution
- Corresponding author: Maolin Zhai, mlzhai@pku.edu.cn
 
	            Citation:
	            
		            Na Zhao, Jing Peng, Jianping Wang, Maolin Zhai. Novel Carboxy-Functionalized PVP-CdS Nanopopcorns with Homojunctions for Enhanced Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica,
							;2022, 38(4): 200404.
						
							doi:
								10.3866/PKU.WHXB202004046
						
					
				
					
				
	        
	                
				Ning, X.; Lu, G. Nanoscale 2020,  12, 1213. doi: 10.1039/C9NR09183A
												 doi: 10.1039/C9NR09183A
											
										
				Zhang, J.; Chen, X.; Bai, Y.; Li, C.; Gao, Y.; Li, R.; Li, C. J. Mater. Chem. A 2019,  7, 10264. doi: 10.1039/C8TA08199A
												 doi: 10.1039/C8TA08199A
											
										
				Li, R.; Li, C. Adv. Catal. 2017,  60, 1. doi: 10.1016/bs.acat.2017.09.001
												 doi: 10.1016/bs.acat.2017.09.001
											
										
				Cao, P. F.; Hu, Y.; Zhang, Y. W.; Peng, J.; Zhai, M. L. Acta Phys. -Chim. Sin. 2017,  33, 2542.
												 doi: 10.3866/pku.whxb201706151
											
										
				Wang, Z.; Wang, L. Chin. J. Catal. 2018,  39, 369. doi: 10.1016/S1872-2067(17)62998-X
												 doi: 10.1016/S1872-2067(17)62998-X
											
										
				Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. Angew. Chem. -Int. Edit. 2015,  54, 1210. doi: 10.1002/anie.201410172
												 doi: 10.1002/anie.201410172
											
										
				Jang, J. S.; Joshi, U. A.; Lee, J. S. J. Phys. Chem. C 2007,  111, 13280. doi: 10.1021/jp072683b
												 doi: 10.1021/jp072683b
											
										
				Jing, D. W.; Guo, L. J. J. Phys. Chem. B 2006,  110, 11139. doi: 10.1021/jp060905k
												 doi: 10.1021/jp060905k
											
										
				Yuan, Y. J.; Li, Z.; Wu, S.; Chen, D.; Yang, L. X.; Cao, D.; Tu, W. G.; Yu, Z. T.; Zou, Z. G. Chem. Eng. J. 2018,  350, 335. doi: 10.1016/j.cej.2018.05.172
												 doi: 10.1016/j.cej.2018.05.172
											
										
				Li, L.; Wu, J.; Liu, B.; Liu, X.; Li, C.; Gong, Y.; Huang, Y.; Pan, L. Catal. Today 2018,  315, 110. doi: 10.1016/j.cattod.2018.03.072
												 doi: 10.1016/j.cattod.2018.03.072
											
										
				Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. Adv. Mater. 2019,  31, 1802981. doi: 10.1002/adma.201802981
												 doi: 10.1002/adma.201802981
											
										
				Wang, P.; Yi, X.; Lu, Y.; Yu, H.; Yu, J. J. Colloid Interface Sci. 2018,  532, 272. doi: 10.1016/j.jcis.2018.07.139
												 doi: 10.1016/j.jcis.2018.07.139
											
										
				Zhao, D.; Chen, C.; Yu, C.; Ma, W.; Zhao, J. J. Phys. Chem. C 2009,  113, 13160. doi: 10.1021/jp9002774
												 doi: 10.1021/jp9002774
											
										
				Ai, Z. Z.; Zhao, G.; Zhong, Y. Y.; Shao, Y. L.; Huang, B. B.; Wu, Y. Z.; Hao, X. P. Appl. Catal. B-Environ. 2018,  221, 179. doi: 10.1016/j.apcatb.2017.09.002
												 doi: 10.1016/j.apcatb.2017.09.002
											
										
				Li, K.; Han, M.; Chen, R.; Li, S. L.; Xie, S. L.; Mao, C.; Bu, X.; Cao, X. L.; Dong, L. Z.; Feng, P.; et al.  Adv. Mater. 2016,  28, 8906. doi: 10.1002/adma.201601047
												 doi: 10.1002/adma.201601047
											
										
				Zhao, N.; Peng, J.; Liu, G.; Zhang, Y.; Lei, W.; Yin, Z.; Li, J.; Zhai, M. J. Mater. Chem. A 2018,  6, 18458. doi: 10.1039/C8TA03414A
												 doi: 10.1039/C8TA03414A
											
										
				Wang, J.; Cui, W.; Chen, R.; He, Y.; Yuan, C.; Sheng, J.; Li, J.; Zhang, Y.; Dong, F.; Sun, Y. Catal. Sci. Technol. 2020,  10, 529. doi: 10.1039/C9CY02048A
												 doi: 10.1039/C9CY02048A
											
										
				Chen, S.; Qi, Y.; Li, C.; Domen, K.; Zhang, F. Joule 2018,  2, 2260. doi: 10.1016/j.joule.2018.07.030
												 doi: 10.1016/j.joule.2018.07.030
											
										
				Liao, Y.; Cao, S. W.; Yuan, Y.; Gu, Q.; Zhang, Z.; Xue, C. Chem. -A Eur. J. 2014,  20, 10220. doi: 10.1002/chem.201403321
												 doi: 10.1002/chem.201403321
											
										
				Zhong, W.; Wu, X.; Wang, P.; Fan, J.; Yu, H. ACS Sustain. Chem. Eng. 2020,  8, 543. doi: 10.1021/acssuschemeng.9b06046
												 doi: 10.1021/acssuschemeng.9b06046
											
										
				Meng, X.; Ouyang, S.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. Chem. Commun. 2014,  50, 11517. doi: 10.1039/C4CC04848B
												 doi: 10.1039/C4CC04848B
											
										
				Zhang, H.; Yang, Z.; Shangguan, L.; Song, X.; Sun, J.; Lei, W. Nanotechnology 2020,  31, 145716. doi: 10.1088/1361-6528/ab6750
												 doi: 10.1088/1361-6528/ab6750
											
										
				Zhao, F.; Feng, Y.; Wang, Y.; Zhang, X.; Liang, X.; Li, Z.; Zhang, F.; Wang, T.; Gong, J.; Feng, W. Nat. Commun. 2020,  11, 1443. doi: 10.1038/s41467-020-15262-4
												 doi: 10.1038/s41467-020-15262-4
											
										
				Muruganandam, S.; Anbalagan, G.; Murugadoss, G. Optik 2017,  131, 826. doi: 10.1016/j.ijleo.2016.12.001
												 doi: 10.1016/j.ijleo.2016.12.001
											
										
				Aisida, S. O.; Ahmad, I.; Ezema, F. I. Phys.  B: Conden. Matter 2020,  579, 411907. doi: 10.1016/j.physb.2019.411907
												 doi: 10.1016/j.physb.2019.411907
											
										
				Senthil, S.; Srinivasan, S.; Thangeeswari, T.; Ratchagar, V. J. Mater. Sci. -Mater. Electron. 2019,  30, 19841. doi: 10.1007/s10854-019-02351-4
												 doi: 10.1007/s10854-019-02351-4
											
										
				Bibi, R.; Huang, H.; Kalulu, M.; Shen, Q.; Wei, L.; Oderinde, O.; Li, N.; Zhou, J. ACS Sustain. Chem. Eng. 2019,  7, 4868. doi: 10.1021/acssuschemeng.8b05352
												 doi: 10.1021/acssuschemeng.8b05352
											
										
				Kour, G.; Gupta, M. Dalton Trans. 2017,  46, 7039. doi: 10.1039/C7DT00822H
												 doi: 10.1039/C7DT00822H
											
										
				Huang, P.; Jiang, Q.; Yu, P.; Yang, L.; Mao, L. ACS Appl. Mater. Interfaces 2013,  5, 5239. doi: 10.1021/am401082n
												 doi: 10.1021/am401082n
											
										
				Kumar, D. P.; Hong, S.; Reddy, D. A.; Kim, T. K. J. Mater. Chem. A 2016,  4, 18551. doi: 10.1039/C6TA08628D
												 doi: 10.1039/C6TA08628D
											
										
				Xiong, J.; Liu, Y.; Wang, D.; Liang, S.; Wu, W.; Wu, L. J. Mater. Chem. A 2015,  3, 12631. doi: 10.1039/C5TA02438B
												 doi: 10.1039/C5TA02438B
											
										
				Li, Y. H.; Zhang, F.; Chen, Y.; Li, J. Y.; Xu, Y. J. Green Chem. 2020,  22, 163. doi: 10.1039/C9GC03332G
												 doi: 10.1039/C9GC03332G
											
										
				Abdelghany, A. M.; Abdelrazek, E. M.; Rashad, D. S. Spectrochim. Acta A 2014,  130, 302. doi: 10.1016/j.saa.2014.04.049
												 doi: 10.1016/j.saa.2014.04.049
											
										
				Guo, Y.; Shi, W.; Zhu, Y.; Xu, Y.; Cui, F. Appl. Catal. B-Environ. 2020,  262, 118262. doi: 10.1016/j.apcatb.2019.118262
												 doi: 10.1016/j.apcatb.2019.118262
											
										
				Waehayee, A.; Watthaisong, P.; Wannapaiboon, S.; Chanlek, N.; Nakajima, H.; Wittayakun, J.; Suthirakun, S.; Siritanon, T. Catal. Sci. Technol. 2020,  10, 978. doi: 10.1039/C9CY01782H
												 doi: 10.1039/C9CY01782H
											
										
				Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988,  17, 513. doi: 10.1063/1.555805
												 doi: 10.1063/1.555805
											
										
				Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983,  79, 1086. doi: 10.1063/1.445834
												 doi: 10.1063/1.445834
											
										
				Zhang, L.; Cheng, Z. Q.; Wang, D. F.; Li, J. F. Mater. Lett. 2015,  158, 439. doi: 10.1016/j.matlet.2015.06.042
												 doi: 10.1016/j.matlet.2015.06.042
											
										
				Chava, R. K.; Son, N.; Kim, Y. S.; Kang, M. Nanomaterials 2020,  10, 619. doi: 10.3390/nano10040619
												 doi: 10.3390/nano10040619
											
										
				Wang, L.; Gao, Z.; Li, Y.; She, H.; Huang, J.; Yu, B.; Wang, Q. Appl. Surf. Sci. 2019,  492, 598. doi: 10.1016/j.apsusc.2019.06.222
												 doi: 10.1016/j.apsusc.2019.06.222
											
										
				Jiang, Z.; Zhang, X.; Yang, G.; Yuan, Z.; Ji, X.; Kong, F.; Huang, B.; Dionysiou, D. D.; Chen, J. Chem. Eng. J. 2019,  373, 814. doi: 10.1016/j.cej.2019.05.112
												 doi: 10.1016/j.cej.2019.05.112
											
										
				Sun, Q.; Wang, N.; Yu, J.; Yu, J. C. Adv. Mater. 2018,  30, 1804368. doi: 10.1002/adma.201804368
												 doi: 10.1002/adma.201804368
											
										
				Wu, Y.; Wang, H.; Tu, W.; Wu, S.; Liu, Y.; Tan, Y. Z.; Luo, H.; Yuan, X.; Chew, J. W. Appl. Catal. B-Environ. 2018,  229, 181. doi: 10.1016/j.apcatb.2018.02.029
												 doi: 10.1016/j.apcatb.2018.02.029
											
										
				Ruan, D.; Fujitsuka, M.; Majima, T. Appl. Catal. B-Environ. 2020,  264, 118541. doi: 10.1016/j.apcatb.2019.118541
												 doi: 10.1016/j.apcatb.2019.118541
											
										
				Xing, P.; Chen, Z.; Chen, P.; Lin, H.; Zhao, L.; Wu, Y.; He, Y. J. Colloid Interface Sci. 2019,  552, 622. doi: 10.1016/j.jcis.2019.05.098
												 doi: 10.1016/j.jcis.2019.05.098
											
										
				Qin, Y.; Li, H.; Lu, J.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Chem. Eng. J. 2020,  384, 123275. doi: 10.1016/j.cej.2019.123275
												 doi: 10.1016/j.cej.2019.123275
											
										
				Moniruddin, M.; Oppong, E.; Stewart, D.; McCleese, C.; Roy, A.; Warzywoda, J.; Nuraje, N. Inorg. Chem. 2019,  58, 12325. doi: 10.1021/acs.inorgchem.9b01854
												 doi: 10.1021/acs.inorgchem.9b01854
											
										
						
						
						
	                Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
Tao Zhou , Xu Han , Wangwang Shen , Fang Ji , Menglong Liu , Yingyu Song , Wen-Wen He . Construction of NiS/CTF heterojunction photocatalyst with an outstanding photocatalytic hydrogen evolution performance. Chinese Chemical Letters, 2025, 36(11): 110415-. doi: 10.1016/j.cclet.2024.110415
Yan-Ling Li , Yue Xu , Chen-Hong Wang , Rui Wang , Shuang-Quan Zang . Dye-stabilized atomically precise copper clusters for enhanced photocatalytic hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 111256-. doi: 10.1016/j.cclet.2025.111256
Mian Wei , Chang Cheng , Bowen He , Bei Cheng , Kezhen Qi , Chuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Hongtao Wang , Yingzhang Shi , Jiayi Guo , Shuzhao Sun , Wenda Zhang , Zhiwen Wang , Yujie Song , Dongpeng Yan . CdS clusters induced defect on NH2−MIL-125(Ti) nanosheets for improving photocatalytic synthesis of N-benzylidene benzylamine. Chinese Chemical Letters, 2025, 36(10): 110779-. doi: 10.1016/j.cclet.2024.110779
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
Jiaqi Yang , Xuqiang Hao , Jiejie Jing , Yuqiang Hao , Zhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131