Citation: Song Peiquan, Xie Liqiang, Shen Lina, Liu Kaikai, Liang Yuming, Lin Kebin, Lu Jianxun, Tian Chengbo, Wei Zhanhua. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200403. doi: 10.3866/PKU.WHXB202004038 shu

Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis

  • Corresponding author: Xie Liqiang, lqxie@hqu.edu.cn Wei Zhanhua, weizhanhua@hqu.edu.cn
  • Received Date: 13 April 2020
    Revised Date: 11 May 2020
    Accepted Date: 26 May 2020
    Available Online: 29 May 2020

    Fund Project: the National Natural Science Foundation of China 21805101the Scientific Research Funds of Huaqiao University, China 19BS105The project was supported by the National Natural Science Foundation of China (21805101, 51802102, 51902110), the Natural Science Foundation of Fujian Province, China (2019J01057), the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University, China (ZQN-PY607), and the Scientific Research Funds of Huaqiao University, China (16BS201, 17BS409, 19BS105)the Scientific Research Funds of Huaqiao University, China 16BS201the Natural Science Foundation of Fujian Province, China 2019J01057the Scientific Research Funds of Huaqiao University, China 17BS409the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University, China ZQN-PY607the National Natural Science Foundation of China 51902110the National Natural Science Foundation of China 51802102

  • Tin oxide (SnO2) thin films are widely used as electron transport layers in planar perovskite solar cells (PSCs) and commonly prepared using solution-processed spin-coating. However, obtaining full coverage and pinhole-free surfaces for the spin-coated (SC) SnO2 is challenging because the nanocrystals in the precursor solution can undergo aggregation, wherein the precursor solution may contain dust particles, and the desired film thickness is rater small. Since dense electron transport layer films without pinholes are crucial in suppressing the non-radiative recombination of charge carriers in PSCs, developing deposition methods to prepare high-quality SnO2 films is important to improve the performance of planar PSCs. In this study, we investigated the application of electrophoresis (EP) in depositing compact and pinhole-free SnO2 thin films. We conducted electrophoresis to deposit a dense nanocrystalline film on the surface of Indium tin oxide (ITO) and employed a spin-coating step to adjust the thickness of the film and remove the residual SnO2 nanocrystalline precursor solution. This method was denoted as EP-SC. In the electrophoresis, the negatively charged SnO2 nanocrystals, caused by a strong electric field, migrated towards the surface of the ITO anode and formed more compactly packed thin films than that of the spin-coated SnO2. The atomic force microscopy (AFM) measurements demonstrated that the surface of EP-SC SnO2 was more uniform than that of SC SnO2 and there were no streaks and aggregated particles on the surface. This may have been due to the fact that the surface charge properties of the aggregated and dust particles in the precursor solution was different from that of the desired SnO2 nanocrystals. Hence, electrophoresis can selectively deposit SnO2 nanocrystals. Specifically, high-quality perovskites and electron transport layer interfaces can be achieved using this method. Both the electrochemical impedance spectroscopy (EIS) and dark JV measurements showed that the PSCs using SnO2 prepared by electrophoresis followed by spin-coating demonstrated remarkably suppressed non-radiative recombination. As a result, the photoelectric power conversion efficiency increased from 18.17% (based on SC) to 19.52% (based on EP-SC) due to the enhanced short-circuit current and open-circuit voltage. The hysteresis of the device was eliminated. More importantly, the long-term stability measurements demonstrated that our device can maintain up to 71% of the initial efficiency after 960 h of continuous operation at the maximum power point (MPP) under one sun illumination. Whereas the device based on spin-coated SnO2 can maintain only up to 70% of the initial efficiency after working for 100 h. The results of this study can help in preparing electron transport layers to construct long-term stable planar PSCs, which are favorable for fabricating large-area PSCs and modules in future researches.
  • 加载中
    1. [1]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    2. [2]

      Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. Nanoscale 2011, 3, 4088. doi: 10.1039/c1nr10867k  doi: 10.1039/c1nr10867k

    3. [3]

      Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. Sci. Rep. 2012, 2, 591. doi: 10.1038/srep00591  doi: 10.1038/srep00591

    4. [4]

      Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; NazeeruddinMd, K.; et al. Nat Photon. 2013, 7, 486. doi: 10.1038/nphoton.2013.80  doi: 10.1038/nphoton.2013.80

    5. [5]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604  doi: 10.1126/science.1228604

    6. [6]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    7. [7]

      Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167  doi: 10.1126/science.1243167

    8. [8]

      Zhu, H.; Miyata, K.; Fu, Y.; Wang, J.; Joshi, P. P.; Niesner, D.; Williams, K. W.; Jin, S.; Zhu, X. Y. Science 2016, 353, 1409. doi: 10.1126/science.aaf9570  doi: 10.1126/science.aaf9570

    9. [9]

      Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Nature 2013, 499, 316. doi: 10.1038/nature12340  doi: 10.1038/nature12340

    10. [10]

      Shai, X. X.; Li, D.; Liu, S. S.; Li, H.; Wang, M. K. Acta Phys. -Chim. Sin. 2016, 32, 2159.  doi: 10.3866/PKU.WHXB201606072

    11. [11]

      Huang, Y.; Sun, Q. D.; Xu, W.; He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.  doi: 10.3866/PKU.WHXB201705042

    12. [12]

      Xie, L.; Lin, K.; Lu, J.; Feng, W.; Song, P.; Yan, C.; Liu, K.; Shen, L.; Tian, C.; Wei, Z. J. Am. Chem. Soc. 2019, 141, 20537. doi: 10.1021/jacs.9b11546  doi: 10.1021/jacs.9b11546

    13. [13]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    14. [14]

      Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476. doi: 10.1038/nature14133  doi: 10.1038/nature14133

    15. [15]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272  doi: 10.1126/science.aaa9272

    16. [16]

      Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/C5EE03874J  doi: 10.1039/C5EE03874J

    17. [17]

      Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Nat. Photon. 2019, 13, 460. doi: 10.1038/s41566-019-0398-2  doi: 10.1038/s41566-019-0398-2

    18. [18]

      Kim, M.; Kim, G.H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D.; et al. Joule 2019, 3, 2179. doi: 10.1016/j.joule.2019.06.014  doi: 10.1016/j.joule.2019.06.014

    19. [19]

      Min, H.; Kim, M.; Lee, S. U.; Kim, H.; Kim, G.; Choi, K.; Lee, J. H.; Seok, S. I. Science 2019, 366, 749. doi: 10.1126/science.aay7044  doi: 10.1126/science.aay7044

    20. [20]

      https://www.nrel.gov/pv/cell-efficiency.html (accessed May 24, 2020).

    21. [21]

      Baena, J. P. C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Kandada, A. R. S.; Zakeeruddin, S. M.; et al. Energy Environ. Sci. 2015, 8, 2928. doi: 10.1039/c5ee02608c  doi: 10.1039/c5ee02608c

    22. [22]

      Jiang, Q.; Zhang, X.; You, J. Small 2018, 14, 1801154. doi: 10.1002/smll.201801154  doi: 10.1002/smll.201801154

    23. [23]

      Li, Y.; Zhu, J.; Huang, Y.; Liu, F.; Lv, M.; Chen, S. H.; Hu, L. H.; Tang, J. W.; Yao, J. X.; Dai, S. Y. RSC Adv. 2015, 5, 28424. doi: 10.1039/c5ra01540e  doi: 10.1039/c5ra01540e

    24. [24]

      Rao, H. S.; Chen, B. X.; Li, W. G.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Adv. Funct. Mater. 2015, 25, 7200. doi: 10.1002/adfm.201501264  doi: 10.1002/adfm.201501264

    25. [25]

      Dong, Q. S.; Shi, Y. T.; Wang, K.; Li, Y.; Wang, S. F.; Zhang, H.; Xing, Y. J.; Du, Y.; Bai, X. G.; Ma, T. L. J. Phys. Chem. C 2015, 119, 10212. doi: 10.1021/acs.jpcc.5b00541  doi: 10.1021/acs.jpcc.5b00541

    26. [26]

      Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. J. Am. Chem. Soc. 2015, 137, 6730. doi: 10.1021/jacs.5b01994

    27. [27]

      Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Adv. Mater. 2017, 1703852. doi: 10.1002/adma.201703852

    28. [28]

      Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Nat. Energy 2016, 2, 16177. doi: 10.1038/nenergy.2016.177  doi: 10.1038/nenergy.2016.177

    29. [29]

      Chen, J. Y.; Chueh, C. C.; Zhu, Z. L.; Chen, W. C.; Jen, A. K. Y. Sol. Energy Mater. Sol. Cells 2017, 164, 47. doi: 10.1016/j.solmat.2017.02.008  doi: 10.1016/j.solmat.2017.02.008

    30. [30]

      Ko, Y.; Kim, Y. R.; Jang, H.; Lee, C.; Kang, M. G.; Jun, Y. Nanoscale Res. Lett. 2017, 12, 498. doi: 10.1186/s11671-017-2247-x  doi: 10.1186/s11671-017-2247-x

    31. [31]

      Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung, H. S. ACS Energy Lett. 2019, 1845. doi: 10.1021/acsenergylett.9b00953

    32. [32]

      Yu, D.; Hu, Y.; Shi, J.; Tang, H.; Zhang, W.; Meng, Q.; Han, H.; Ning, Z.; Tian, H. Sci. China Chem. 2019, 62, 684. doi: 10.1007/s11426-019-9448-3  doi: 10.1007/s11426-019-9448-3

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    5. [5]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    6. [6]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    7. [7]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    18. [18]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(12)
  • Abstract views(463)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return