Citation: Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200402. doi: 10.3866/PKU.WHXB202004025 shu

Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis

  • Corresponding author: Xiaogong Wang, wxg-dce@mail.tsinghua.edu.cn
  • Received Date: 8 April 2020
    Revised Date: 26 April 2020
    Accepted Date: 27 April 2020
    Available Online: 11 May 2020

    Fund Project: the National Key Basic Research Program of China (973) 2012CB933402

  • Graphene oxide (GO) possesses a large number of oxygen-containing functional groups on its basal planes and edges, enabling it to disperse well in water and other aqueous media. This property facilitates the processing of GO by various wet-processing methods. Because of its interesting properties and useful intermediate role in preparing graphene derivatives, GO has potential applications in many fields, including composites, separators, sensors, actuators, and energy storage and conversion. At high concentrations, strong, competitive interactions occur in GO aqueous dispersions that significantly impact the rheological behavior of these dispersions. In a liquid medium, the dispersed GO nanosheets form a unique colloidal system, in which solvation, electrostatic interactions, hydrogen bonding, and the lyophilic effect play important roles. The aromatic domains preserved from precursor graphite show attractive van der Waals interaction and ππ stacking between GO sheets. In this study, the effects of pH, temperature, and different organic solvents on the rheological behavior of GO dispersions were investigated through steady and dynamic rheological tests and theoretical analysis. The results showed that enhancing acidity, increasing the temperature within a certain range, and adding organic solvents such as pyridine promote transition of the GO aqueous dispersion from a viscoelastic liquid to a gel state, which shows different rheological properties. GO sheets in dispersion interact through negative charges originating from the many ionizable groups in the nanosheets and electrical double layers. Analysis using the Deryagin-Landau-Verwey-Overbeek (DLVO) theory showed that, under the conditions described above, these interactions were remarkably altered with consequent effects on the rheological properties. Weakened electric double-layer interaction disrupted the GO colloidal dispersion state and resulted in the association of GO nanosheets to form gel. Based on the above understanding, the yield stress of the GO dispersions affected by the volume fraction was analyzed by population balance equation (PBE) modeling. Through creep and relaxation experiments, the structure and rheological properties of GO dispersions at high concentrations were found to be similar in many respects to those of polymers. Therefore, the viscoelastic behavior of GO dispersions can be well described by the Poynting-Thomson model, which can provide theoretical support and advance the study of complex GO dispersions. These results shed new light on the rheological behavior of GO dispersions and can be used to optimize the processing conditions for future applications.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1142/9789814287005_0002  doi: 10.1142/9789814287005_0002

    3. [3]

      Stankovich, S.; Dikin, D. A.; Dommett, G. J. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. B.; Ruoff, R. S. Nature 2006, 442, 282. doi: 10.1038/nature04969  doi: 10.1038/nature04969

    4. [4]

      Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, P. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. B.; Ruoff, R. S. Nature 2007, 448, 457. doi: 10.1038/nature06016  doi: 10.1038/nature06016

    5. [5]

      Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. doi: 10.1038/nnano.2009.58  doi: 10.1038/nnano.2009.58

    6. [6]

      Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228. doi: 10.1039/B917103G  doi: 10.1039/B917103G

    7. [7]

      Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906. doi: 10.1002/adma.201001068  doi: 10.1002/adma.201001068

    8. [8]

      Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101. doi: 10.1038/nnano.2007.451  doi: 10.1038/nnano.2007.451

    9. [9]

      Eda, G.; Chhowalla, M. Adv. Mater. 2010, 22, 2392. doi: 10.1002/adma.200903689  doi: 10.1002/adma.200903689

    10. [10]

      Hirata, M.; Gotou, T.; Ohba, M. Carbon 2005, 43, 503. doi: 10.1016/j.carbon.2004.10.009  doi: 10.1016/j.carbon.2004.10.009

    11. [11]

      Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Nat. Chem. 2010, 2, 1015. doi: 10.1038/nchem.907  doi: 10.1038/nchem.907

    12. [12]

      Szabó, T.; Szeri, A.; Dékány, I. Carbon 2005, 43, 87. doi: 10.1016/j.carbon.2004.08.025  doi: 10.1016/j.carbon.2004.08.025

    13. [13]

      Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Polymer 2011, 52, 5. doi: 10.1016/j.polymer.2010.11.042  doi: 10.1016/j.polymer.2010.11.042

    14. [14]

      Mei, Q. S.; Zhang, Z. P. Angew. Chem. Int. Ed. 2012, 124, 5700. doi: 10.1002/anie.201201389  doi: 10.1002/anie.201201389

    15. [15]

      Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Science 2013, 341, 534. doi: 10.1126/science.1239089  doi: 10.1126/science.1239089

    16. [16]

      Gwon, H.; Kim, H. S.; Lee, K. U.; Seo, D. H.; Park, Y. C.; Lee, Y. S.; Ahn, B. T.; Kang, K. Energy Environ. Sci. 2011, 4, 1277. doi: 10.1039/C0EE00640H  doi: 10.1039/C0EE00640H

    17. [17]

      Zhang, J. T.; Zhao, X. S. J. Phys. Chem. C 2012, 116, 5420. doi: 10.1021/jp211474e  doi: 10.1021/jp211474e

    18. [18]

      Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477. doi: 10.1021/jp9731821  doi: 10.1021/jp9731821

    19. [19]

      Cai, W. W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D. X.; Velamakanni, A.; An, S. J.; Stoller, M.; et al. Science 2008, 321, 1815. doi: 10.1126/science.1162369  doi: 10.1126/science.1162369

    20. [20]

      Cheng, C.; Li, D. Adv. Mater. 2013, 25, 13. doi: 10.1126/science.1239089  doi: 10.1126/science.1239089

    21. [21]

      Li, C.; Shi, G. Q. Adv. Mater. 2014, 26, 3992. doi: 10.1002/adma.201306104  doi: 10.1002/adma.201306104

    22. [22]

      Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin Ⅲ, R. A.; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. Mater. Horiz. 2014, 1, 326. doi: 10.1039/C3MH00144J  doi: 10.1039/C3MH00144J

    23. [23]

      Chen, D. T. N.; Wen, Q.; Janmey, P. A.; Crocker, J. C.; Yodh, A. G.; Annu. Rev. Condens. Matter Phys. 2010, 1, 301. doi: 10.1146/annurev-conmatphys-070909-104120  doi: 10.1146/annurev-conmatphys-070909-104120

    24. [24]

      Giudice, F. D.; Shen, A. Q. Curr. Opin. Chem. Eng. 2017, 16, 23. doi: 10.1016/j.coche.2017.04.003  doi: 10.1016/j.coche.2017.04.003

    25. [25]

      Vallés, C.; Young, R. J.; Lomax, D. J.; Kinlock, I. A. J. Mater. Sci. 2014, 49, 6311. doi: 10.1007/s10853-014-8356-3  doi: 10.1007/s10853-014-8356-3

    26. [26]

      Tesfai, W.; Singh, P.; Shatilla, Y.; Iqbal, M. Z.; Abdala, A. A. J. Nanopart. Res. 2013, 15, 1989. doi: 10.1007/s11051-013-1989-3  doi: 10.1007/s11051-013-1989-3

    27. [27]

      Konkena, B.; Vasudevan, S. J. Phys. Chem. 2014, 118, 21706. doi: 10.1021/jp507266t  doi: 10.1021/jp507266t

    28. [28]

      Wang, P. H.; Li, Y. E.; Zhang, Y. T. Memb. Sci. Technol. 2019, 39, 62. doi: 10.16159/j.cnki.issn1007-8924.2019.03.010  doi: 10.16159/j.cnki.issn1007-8924.2019.03.010

    29. [29]

      Xiong, Z. Y.; Yun, X. W.; Qiu, L.; Sun, Y. Y.; Tang, B.; He, Z. J.; Xiao, J.; Chung, D.; Ng, T. W.; Yan, H.; et al. Adv. Mater. 2019, 31, 1804434. doi: 10.1002/adma.201804434  doi: 10.1002/adma.201804434

    30. [30]

      Wu, L.; Liu, L.; Gao, B.; Munoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z. H.; Wang, H. Langmuir 2013, 29, 15174. doi: 10.1021/la404134x  doi: 10.1021/la404134x

    31. [31]

      Gudarzi, M. M. Langmuir 2016, 32, 5058. doi: 10.1021/acs.langmuir.6b01012  doi: 10.1021/acs.langmuir.6b01012

    32. [32]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017  doi: 10.1021/ja01539a017

    33. [33]

      Xiong, Z. Y.; Yun, X. W.; Tang, B.; Wang, X. G. Carbon 2016, 107, 548. doi: 10.1016/j.carbon.2016.06.029  doi: 10.1016/j.carbon.2016.06.029

    34. [34]

      Hahn, M. W.; O'Melia, C. R. Environ. Sci. Technol. 2004, 38, 210. doi: 10.1021/es030416n  doi: 10.1021/es030416n

    35. [35]

      Tang, B.; Gao, E.; Xiong, Z.; Dang, B.; Xu, Z.; Wang, X. Chem. Mater. 2018, 30, 5951. doi: 10.1021/acs.chemmater.8b02083  doi: 10.1021/acs.chemmater.8b02083

    36. [36]

      Ramkrishna, D. Population Balances: Theory and Applications to Particulate Systems in Engineering; Academic Press: San Diego, CA, 2000.

    37. [37]

      Camptr, T. R.; Stein, P. C. J. Boston Soc. Civil Eng. 1943, 30, 219.

    38. [38]

      Diemer, R. B.; Olson, J. H. Chem. Eng. Sci. 2002, 57, 2193. doi: 10.1016/S0009-2509(02)00111-2  doi: 10.1016/S0009-2509(02)00111-2

    39. [39]

      Dimitriou, C. J.; Ewoldt, R. H.; McKinley, G. H. J. Rheol. 2013, 57, 27. doi: 10.1122/1.4754023  doi: 10.1122/1.4754023

    40. [40]

      Armstrong, M. J.; Beris, A. N.; Wagner, N. J. AIChE J. 2017, 63, 1937. doi: 10.1002/aic.15577  doi: 10.1002/aic.15577

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    19. [19]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(10)
  • Abstract views(275)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return