Citation: Wei Zhou, Yunchao Li, Louzhen Fan, Xiaohong Li. Thioflavin T Specifically Binding with G-Quadruplex Flanked by DoubleStranded DNA[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200401. doi: 10.3866/PKU.WHXB202004017 shu

Thioflavin T Specifically Binding with G-Quadruplex Flanked by DoubleStranded DNA

  • Corresponding author: Xiaohong Li, lxhxiao@bnu.edu.cn
  • Received Date: 4 April 2020
    Revised Date: 20 May 2020
    Accepted Date: 21 May 2020
    Available Online: 27 May 2020

    Fund Project: the National Natural Science Foundation of China 21673022

  • G-rich DNA sequences can transform into G-quadruplexes (G4s) in the presence of metal ions. Based on the structural switches, G4 has been recognized as an attractive signal-transducing element for constructing colorimetric, electrochemical, and fluorescent sensing platforms capable of recognizing ions, small biological molecules, proteins, and even cells. For fluorescent sensing platforms, fluorescent small molecules (FSMs) specifically binding with G4s, such as crystal violet (CV), protoporphyrin IX (PPIX), zinc protoporphyrin IX (ZnPPIX), and Thioflavin T (ThT), are usually applied as fluorescent signal readout probes. It was noticed that the binding affinity of FSM with G4 is highly dependent on G4 morphologies because G-rich DNA sequences can fold into multiple G4 conformations, such as parallel, antiparallel, or hybrid. For example, CV only binds with antiparallel G4, PPIX or ZnPPIX preferentially interacts with parallel G4, and ThT displays high affinity for hybrid G4. Furthermore, the binding affinity of FSMs with G4 is also dependent on co-existing ions and ion concentrations, especially elevated Na+ level (140 mmol·L-1). It is the reason why the performance of G4-based sensors in biological and environmental samples is decreased with different extents. Therefore, how to design G-rich DNA sequences to generally achieve FSMs specifically binding with G4, which is independent of G4 morphologies and co-existing Na+ and Na+ concentrations remains a challenge. In this study, a simple G-rich DNA sequence (thrombin binding aptamer, TBA) flanked by 10-mer single-stranded DNA at the 3' and 5' termini (TBA-10 bp) is designed. In the presence of K+, TBA transforms into antiparallel G4 (K+-TBA) and TBA-10 bp transforms into antiparallel K+-TBA flanked by fully hybridized double-stranded DNA (ds-DNA) (K+-TBA-10 bp). Actually, ThT cannot effectively bind with antiparallel K+-TBA. Compared with K+-TBA, upon K+-TBA-10 bp binding with ThT, ThT emission fluorescence increased by 100-fold. Importantly, the binding affinity improved by 1000-fold, which is independent of co-existing Na+ and Na+ concentrations (5-140 mmol·L-1). Integrated with UV-Vis spectroscopy, fluorescent spectroscopy, and circular dichroism spectroscopy, it is believed that ThT can specifically and efficiently imbed in the junction between K+-TBA and ds-DNA. To corroborate the binding mode, TBA in TBA-10 bp is substituted by other G-rich DNA sequences transforming into parallel and antiparallel G4 in the presence of K+, respectively. The resulting improved ThT emission fluorescence indicated that such a specific binding mode generally improved the binding affinity of FSMs with G4. Our findings provide new insights into the improvement of the binding affinity of FSMs and G4, and reveal potential biochemical and bioanalytical applications of G4.
  • 加载中
    1. [1]

      Davis, J. T. Angew. Chem. Int. Ed. 2004, 43, 668. doi: 10.1002/anie.200300589  doi: 10.1002/anie.200300589

    2. [2]

      Maizels, N. Nat. Struct. Mol. Biol. 2006, 13, 1055. doi: 10.1038/nsmb1171  doi: 10.1038/nsmb1171

    3. [3]

      Sun, H.; Li, X.; Li, Y.; Fan, L.; Kraatz, H. B. Analyst 2013, 138, 856. doi: 10.1039/c2an36564b  doi: 10.1039/c2an36564b

    4. [4]

      Xu, L.; Shen, X.; Hong, S.; Wang, J.; Zhang, Y.; Wang, H.; Zhang, J.; Pei, R. Chem. Commun. 2015, 51, 8165. doi: 10.1039/c5cc01590a  doi: 10.1039/c5cc01590a

    5. [5]

      Liu, J.; Lu, Y. J. Am. Chem. Soc. 2003, 125, 6642. doi: 10.1021/ja034775u  doi: 10.1021/ja034775u

    6. [6]

      Li, C. L.; Liu, K. T.; Lin, Y. W.; Chang, H. T. Anal. Chem. 2011, 83, 225. doi: 10.1021/ac1028787  doi: 10.1021/ac1028787

    7. [7]

      Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2012, 41, 3210. doi: 10.1039/c1cs15245a  doi: 10.1039/c1cs15245a

    8. [8]

      Hwang, K.; Wu, P.; Kim, T.; Lei, L.; Tian, S.; Wang, Y.; Lu, Y. Angew. Chem. Int. Ed. 2014, 53, 13798. doi: 10.1002/anie.201408333  doi: 10.1002/anie.201408333

    9. [9]

      Yang, L.; Qing, Z.; Liu, C.; Tang, Q.; Li, J.; Yang, S.; Zheng, J.; Yang, R.; Tan, W. Anal. Chem. 2016, 88, 9285. doi: 10.1021/acs.analchem.6b02667  doi: 10.1021/acs.analchem.6b02667

    10. [10]

      Yang, J.; Dou, B.; Yuan, R.; Xiang, Y. Anal. Chem. 2016, 88, 8218. doi: 10.1021/acs.analchem.6b02035  doi: 10.1021/acs.analchem.6b02035

    11. [11]

      Liu, Z.; Luo, X.; Li, Z.; Huang, Y.; Nie, Z.; Wang, H. H.; Yao, S. Anal. Chem. 2017, 89, 1892. doi: 10.1021/acs.analchem.6b04360  doi: 10.1021/acs.analchem.6b04360

    12. [12]

      Li, X. M.; Zheng, K. W.; Hao, Y. H.; Tan, Z. Angew. Chem. Int. Ed. 2016, 55, 13759. doi: 10.1002/anie.201607195  doi: 10.1002/anie.201607195

    13. [13]

      Hansel-Hertsch, R.; Antonio, M. D.; Balasubramanian, S. Nat. Rev. Mol. Cell Biol. 2017, 18, 279. doi: 10.1038/nrm.2017.3  doi: 10.1038/nrm.2017.3

    14. [14]

      Ge, L.; Wang, W.; Sun, X.; Hou, T.; Li, F. Anal. Chem. 2016, 88, 9691. doi: 10.1021/acs.analchem.6b02584  doi: 10.1021/acs.analchem.6b02584

    15. [15]

      Li, X. H.; Yu, Z.; Li, Y. C.; Ye, M. F. Acta Phys. -Chim. Sin. 2018, 34, 1293.  doi: 10.3866/PKU.WHXB201804111

    16. [16]

      Ou, Z. Z.; Gao, Y. Y.; Cai, W. J.; Ma, T. T.; Yi, N.; Li, Z. Y. Acta Phys. -Chim. Sin. 2019, 35, 230.  doi: 10.3866/PKU.WHXB201711281

    17. [17]

      Wang, M.; Wang, W.; Kang, T. S.; Leung, C. H.; Ma, D. L. Anal. Chem. 2016, 88, 981. doi: 10.1021/acs.analchem.5b04064  doi: 10.1021/acs.analchem.5b04064

    18. [18]

      Liu, Z.; Luo, X.; Li, Z.; Huang, Y.; Nie, Z.; Wang, H. H.; Yao, S. Anal. Chem. 2017, 89, 1892. doi: 10.1021/acs.analchem.6b04360  doi: 10.1021/acs.analchem.6b04360

    19. [19]

      Ge, B.; Huang, Y. C.; Sen, D.; Yu, H. Z., Angew. Chem. Int. Ed. 2010, 49, 9965. doi: 10.1002/anie.201004946  doi: 10.1002/anie.201004946

    20. [20]

      Leung, K. H.; He, B.; Yang, C.; Leung, C. H.; Wang, H. M.; Ma, D. L. ACS Appl. Mater. Interfaces 2015, 7, 24046. doi: 10.1021/acsami.5b08314  doi: 10.1021/acsami.5b08314

    21. [21]

      Zhang, L.; Zhu, J.; Li, T.; Wang, E. Anal. Chem. 2011, 83, 8871. doi: 10.1021/ac2006763  doi: 10.1021/ac2006763

    22. [22]

      Hud, N. V. Nucleic Acid-Metal Ion Interactions; Royal Society of Chemistry: Cambridge, UK, 2009.

    23. [23]

      Neidle, S.; Balasubramanian, S. Quadruplex Nucleic Acids; Royal Society of Chemistry: Cambridge, UK, 2006; Vol. 7.

    24. [24]

      Kong, D. M.; Ma, Y. E.; Guo, J. H.; Yang, W.; Shen, H. X. Anal. Chem. 2009, 81, 2678. doi: 10.1021/ac802558f  doi: 10.1021/ac802558f

    25. [25]

      Li, T.; Wang, E.; Dong, S. Anal. Chem. 2010, 82, 7576. doi: 10.1021/ac1019446  doi: 10.1021/ac1019446

    26. [26]

      Liu, L.; Shao, Y.; Peng, J.; Huang, C.; Liu, H.; Zhang, L. Anal. Chem. 2014, 86, 1622. doi: 10.1021/ac403326m  doi: 10.1021/ac403326m

    27. [27]

      Hu, M. H.; Zhou, J.; Luo, W. H.; Chen, S. B.; Huang, Z. S.; Wu, R.; Tan, J. H. Anal. Chem. 2019, 91, 2480. doi: 10.1021/acs.analchem.8b05298  doi: 10.1021/acs.analchem.8b05298

    28. [28]

      Wang, M.; Wang, W.; Kang, T. S.; Leung, C. H.; Ma, D. L. Anal. Chem. 2016, 88, 981. doi: 10.1021/acs.analchem.5b04064  doi: 10.1021/acs.analchem.5b04064

    29. [29]

      Wu, S.; Wang, L.; Zhang, N.; Liu, Y.; Zheng, W.; Chang, A.; Wang, F.; Li, S.; Shangguan, D. Chem. -Eur. J. 2016, 22, 6037. doi: 10.1002/chem.201505170  doi: 10.1002/chem.201505170

    30. [30]

      Zhao, D.; Dong, X.; Jiang, N.; Zhang, D.; Liu, C. Nucleic Acids Res. 2014, 42, 11612. doi: 10.1093/nar/gku833  doi: 10.1093/nar/gku833

    31. [31]

      Renaud de la Faverie, A.; Guedin, A.; Bedrat, A.; Yatsunyk, L. A.; Mergny, J. L. Nucleic Acids Res. 2014, 42, e65. doi: 10.1093/nar/gku111  doi: 10.1093/nar/gku111

    32. [32]

      Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P. I.; Bhasikuttan, A. C. J. Am. Chem. Soc. 2013, 135, 367. doi: 10.1021/ja309588h  doi: 10.1021/ja309588h

    33. [33]

      Zhou, W.; Yu, Z.; Ma, G.; Jin, T.; Li, Y.; Fan, L.; Li, X. Analyst 2019, 144, 2284. doi: 10.1039/C8AN02430H  doi: 10.1039/C8AN02430H

    34. [34]

      De Rache, A.; Kejnovska, I.; Vorlickova, M.; Buess-Herman, C. Chem. -Eur. J. 2012, 18, 4392. doi: 10.1002/chem.201103381  doi: 10.1002/chem.201103381

    35. [35]

      Vorlíčková, M.; Kejnovská, I.; Bednářová, K.; Renčiuk, D.; Kypr, J. Chirality 2012, 24, 691. doi: 10.1002/chir.22064  doi: 10.1002/chir.22064

    36. [36]

      Dutta, K.; Fujimoto, T.; Inoue, M.; Miyoshi, D.; Sugimoto, N. Chem. Commun. 2010, 46, 7772. doi: 10.1039/c0cc00710b  doi: 10.1039/c0cc00710b

    37. [37]

      Zhang, D.; Han, J.; Li, Y.; Fan, L.; Li, X. J. Phys. Chem. B 2016, 120, 6606. doi: 10.1021/acs.jpcb.6b05002  doi: 10.1021/acs.jpcb.6b05002

    38. [38]

      Kong, D. M.; Ma, Y. E.; Guo, J. H.; Yang, W.; Shen, H. X. Anal. Chem. 2009, 81, 2678. doi: 10.1021/ac802558f  doi: 10.1021/ac802558f

    39. [39]

      Waller, Z. A. E.; Sewitz, S. A.; Hsu, S. T. D.; Balasubramanian, S. J. Am. Chem. Soc. 2009, 131, 12628. doi: 10.1021/ja901892u  doi: 10.1021/ja901892u

    40. [40]

      Zhang, R.; Cheng, M.; Zhang, L. M.; Zhu, L. N.; Kong, D. M. ACS Appl. Mater. Interfaces 2018, 10, 13350. doi: 10.1021/acsami.8b01901  doi: 10.1021/acsami.8b01901

    41. [41]

      Liu, L.; Shao, Y.; Peng, J.; Huang, C.; Liu, H.; Zhang, L. Anal. Chem. 2014, 86, 1622. doi: 10.1021/ac403326m  doi: 10.1021/ac403326m

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    13. [13]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    14. [14]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    15. [15]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

Metrics
  • PDF Downloads(15)
  • Abstract views(361)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return