Citation: Yang Tianyi, Cui Cheng, Rong Hongpan, Zhang Jiatao, Wang Dingsheng. Recent Advances in Platinum-based Intermetallic Nanocrystals: Controlled Synthesis and Electrocatalytic Applications[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 200304. doi: 10.3866/PKU.WHXB202003047 shu

Recent Advances in Platinum-based Intermetallic Nanocrystals: Controlled Synthesis and Electrocatalytic Applications

  • Corresponding author: Rong Hongpan, rhp@bit.edu.cn Wang Dingsheng, wangdingsheng@mail.tsinghua.edu.cn
  • Received Date: 19 March 2020
    Revised Date: 15 April 2020
    Accepted Date: 17 April 2020
    Available Online: 24 April 2020

    Fund Project: the Beijing Municipal Science & Technology Commission, China Z191100007219003the National Natural Science Foundation of China 51902023the National Natural Science Foundation of China 51631001the National Natural Science Foundation of China 21671117the National Key R&D Program of China 2018YFA0702003the National Natural Science Foundation of China 51872030The project was supported by the Beijing Institute of Technology Research Fund Program for Young Scholars, China, the National Key R&D Program of China (2018YFA0702003, 2016YFA0202801), the National Natural Science Foundation of China (51631001, 51872030, 51702016, 51902023, 21801015, 21890383, 21671117, 21871159), and the Beijing Municipal Science & Technology Commission, China (Z191100007219003)the National Natural Science Foundation of China 21801015the National Natural Science Foundation of China 51702016the National Natural Science Foundation of China 21871159the National Key R&D Program of China 2016YFA0202801the National Natural Science Foundation of China 21890383

  • Fuel cells, whose energy source can be hydrogen, formic acid, methanol, or ethanol, have received considerable attention in recent years because of their environmentally friendly characteristics. A high Pt loading is often required to achieve a practical power density in fuel cells, thus leading to high costs and limited applications. Meanwhile, the high Pt loading promotes aggregation during cycling under harsh electrocatalytic conditions, which reduces the surface area of the catalyst and leads to a decrease in catalytic activity. The formation of alloy or intermetallic nanocrystals via the addition of non-precious metals along with precious metals is one strategy to effectively reduce the cost. Due to the electronic and geometric effects introduced by the non-precious metals, the catalytic performance of these bimetallic nanocrystals can be retained or even improved. Compared to the metallic alloy nanocrystals, the intermetallic ones are more stable in critical catalytic conditions. Due to their highly ordered structures, Pt-based intermetallic nanocrystals are widely used as electrode materials for various electrocatalytic reactions in fuel cells, and they show high stability against oxidation and etching. PtCo intermetallic nanocrystals have attained performances that exceed the 2020 target of the U.S. Department of Energy (DOE) for Pt activity and stability for the cathode reaction of fuel cells (oxygen reduction reaction). Decreasing the size of intermetallic compounds to the nanometer scale can significantly increase their active site densities due to the large specific surface area. However, the preparation of intermetallic nanocrystals is more complicated than that of alloys. Therefore, to further improve the electrocatalytic properties of intermetallic nanocrystals, an in-depth study of the factors affecting the electrocatalytic properties of nanocrystals is necessary. This review summarizes recent advances in Pt-based intermetallic nanocrystals. First, we highlight the controlled synthesis strategies, including direct liquid-phase synthesis, the thermal annealing approach, and chemical vapor deposition. Of these strategies, direct liquid-phase synthesis is the most common approach to prepare the intermetallic nanocrystals. Second, the diverse potential applications of different electrocatalytic reactions are summarized. The reactions include the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and hydrogen oxidation reaction (HOR), as well as the oxidation reactions of formic acid (FAOR), methanol (MOR), and ethanol (EtOR). Of these reactions, ORR is the most important, and it has been widely studied. Some advanced characterization techniques and machine learning research based on density functional theory (DFT) are also mentioned. Finally, the challenges and the future perspectives of intermetallic nanocrystals are outlined.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Xu, Q.; Guo, C.; Tian, S.; Zhang, J.; Chen, W.; Cheong, W.; Gu, L.; Zheng, L.; Xiao, J.; Liu, Q.; et al. Sci. China Mater. 2020, doi: 10.1007/s40843-020-1334-6  doi: 10.1007/s40843-020-1334-6

    3. [3]

      Xiong, Y.; Dong, J.; Zheng, Q.; Xin, P.; Chen, W.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z.; et al. Nat. Nanotechnol. 2020, doi: 10.1038/s41565-020-0665-x  doi: 10.1038/s41565-020-0665-x

    4. [4]

      Li, X.; Rong, H.; Zhang, J.; Wang, D.; Li, Y. Nano Res. 2020, doi: 10.1007/s12274-020-2755-3  doi: 10.1007/s12274-020-2755-3

    5. [5]

      Sun, T.; Xu, L.; Wang, D.; Li, Y. Nano Res. 2019, 12, 2067. doi: 10.1007/s12274-019-2345-4  doi: 10.1007/s12274-019-2345-4

    6. [6]

      Huang, L.; Jiang, Z.; Gong, W.; Shen, P. K. Appl. Nano Mater. 2018, 1, 5019. doi: 10.1021/acsanm.8b01113  doi: 10.1021/acsanm.8b01113

    7. [7]

      Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S. J. Am. Chem. Soc. 2018, 140, 1142. doi: 10.1021/jacs.7b12353  doi: 10.1021/jacs.7b12353

    8. [8]

      Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I. S.; He, D.; Tang, H.; Mu, S. ACS Catal. 2018, 8, 7578. doi: 10.1021/acscatal.8b00366  doi: 10.1021/acscatal.8b00366

    9. [9]

      US Department of Energy. (2018). DOE technical targets for polymer electrolyte membrane fuel cell components. https://www.energy.gov/eere/fuelcells/doe-technicaltargets-polymer-electrolyte-membrane-fuelcell-components

    10. [10]

      Fu, K.; Zeng, L.; Liu, J.; Liu, M.; Li, S.; Guo, W.; Gao, Y.; Pan, M. J. Alloys Compd. 2020, 815, 152374. doi: 10.1016/j.jallcom.2019.152374  doi: 10.1016/j.jallcom.2019.152374

    11. [11]

      Liu, L.; Corma, A. Chem. Rev. 2018, 118, 4981. doi: 10.1021/acs.chemrev.7b00776  doi: 10.1021/acs.chemrev.7b00776

    12. [12]

      Robinson, J. E.; Labrador, N. Y.; Chen, H.; Sartor, B. E.; Esposito, D. V. ACS Catal. 2018, 8, 11423. doi: 10.1021/acscatal.8b03626  doi: 10.1021/acscatal.8b03626

    13. [13]

      Wu, Z.; Bukowski, B. C.; Li, Z.; Milligan, C.; Zhou, L.; Ma, T.; Wu, Y.; Ren, Y.; Ribeiro, F. H.; Delgass, W. N.; et al. J. Am. Chem. Soc. 2018, 140, 14870. doi: 10.1021/jacs.8b08162

    14. [14]

      Zhao, X.; Liu, X.; Huang, B.; Wang, P.; Pei, Y. J. Mater. Chem. A 2019, 7, 24583. doi: 10.1039/c9ta08661g  doi: 10.1039/c9ta08661g

    15. [15]

      Xiao, W.; Lei, W.; Gong, M.; Xin, H. L.; Wang, D. ACS Catal. 2018, 8, 3237. doi: 10.1021/acscatal.7b04420  doi: 10.1021/acscatal.7b04420

    16. [16]

      Li, J.; Sun, S. Acc. Chem. Res. 2019, 52, 2015. doi: 10.1021/acs.accounts.9b00172  doi: 10.1021/acs.accounts.9b00172

    17. [17]

      Karamad, M.; Tripkovic, V.; Rossmeisl, J. ACS Catal. 2014, 4, 2268. doi: 10.1021/cs500328c  doi: 10.1021/cs500328c

    18. [18]

      Zhu, Y.; Yuan, M.; Deng, L.; Ming, R.; Zhang, A.; Yang, M.; Chai, B.; Ren, Z. RSC Adv. 2017, 7, 1553. doi: 10.1039/c6ra24754g  doi: 10.1039/c6ra24754g

    19. [19]

      Magno, L. M.; Sigle, W.; van Aken, P. A.; Angelescu, D.; Stubenrauch, C. Phys. Chem. Chem. Phys. 2011, 13, 9134. doi: 10.1039/c1cp20159j  doi: 10.1039/c1cp20159j

    20. [20]

      Wang, C.; Sang, X.; Gamler, J. T. L.; Chen, D. P.; Unocic, R. R.; Skrabalak, S. E. Nano Lett. 2017, 17, 5526. doi: 10.1021/acs.nanolett.7b02239  doi: 10.1021/acs.nanolett.7b02239

    21. [21]

      Thompson, S. T.; James, B. D.; Huya-Kouadio, J. M.; Houchins, C.; DeSantis, D. A.; Ahluwalia, R.; Wilson, A. R.; Kleen, G.; Papageorgopoulos, D. J. Power Sources 2018, 399, 304. doi: 10.1016/j.jpowsour.2018.07.100  doi: 10.1016/j.jpowsour.2018.07.100

    22. [22]

      Li, J.; Sharma, S.; Liu, X.; Pan, Y.; Spendelow, J. S.; Chi, M.; Jia, Y.; Zhang, P.; Cullen, D. A.; Cullen, D. A.; Xi, Z.; et al. Joule 2019, 3, 124. doi: 10.1016/j.joule.2018.09.016  doi: 10.1016/j.joule.2018.09.016

    23. [23]

      Wang, X. X.; Swihart, M. T.; Wu, G. Nat. Catal. 2019, 2, 578. doi: 10.1038/s41929-019-0304-9  doi: 10.1038/s41929-019-0304-9

    24. [24]

      Bortoloti, F.; Garcia, A. C.; Angelo, A. C. D. Int. J. Int. J. Hydrogen Energy 2015, 40, 10816. doi: 10.1016/j.ijhydene.2015.06.145  doi: 10.1016/j.ijhydene.2015.06.145

    25. [25]

      Santos, E.; Pinto, L. M. C.; Soldano, G.; Innocente, A. F.; Ângelo, A. C. D.; Schmickler, W. Catal. Today 2013, 202, 191. doi: 10.1016/j.cattod.2012.07.044  doi: 10.1016/j.cattod.2012.07.044

    26. [26]

      Rong, H.; Mao, J.; Xin, P.; He, D.; Chen, Y.; Wang, D.; Niu, Z.; Wu, Y.; Li, Y. Adv. Mater. 2016, 28, 2540. doi: 10.1002/adma.201504831  doi: 10.1002/adma.201504831

    27. [27]

      Russell, A. E. Faraday Discuss. 2008, 140, 9. doi: 10.1039/b814058h  doi: 10.1039/b814058h

    28. [28]

      You, G.; Jiang, J.; Li, M.; Li, L.; Tang, D.; Zhang, J.; Zeng, X. C.; He, R. ACS Catal. 2017, 8, 132. doi: 10.1021/acscatal.7b02698  doi: 10.1021/acscatal.7b02698

    29. [29]

      Cui, Z.; Chen, H.; Zhao, M.; Marshall, D.; Yu, Y.; Abruna, H.; DiSalvo, F. J. J. Am. Chem. Soc. 2014, 136, 29. doi: 10.1021/ja504573a  doi: 10.1021/ja504573a

    30. [30]

      Liao, H.; Zhu, J.; Hou, Y. Nanoscale 2014, 6, 1049. doi: 10.1039/c3nr05590f  doi: 10.1039/c3nr05590f

    31. [31]

      Qi, Z.; Xiao, C.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y.; Li, X.; Curtiss, L. A.; Huang, W. J. Am. Chem. Soc. 2017, 139, 4762. doi: 10.1021/jacs.6b12780  doi: 10.1021/jacs.6b12780

    32. [32]

      Yuan, X.; Jiang, X.; Cao, M.; Chen, L.; Nie, K.; Zhang, Y.; Xu, Y.; Sun, X.; Li, Y.; Zhang, Q. Nano Res. 2018, 12, 429. doi: 10.1007/s12274-018-2234-2  doi: 10.1007/s12274-018-2234-2

    33. [33]

      Wang, Q.; Chen, S.; Li, P.; Ibraheem, S.; Li, J.; Deng, J.; Wei, Z. Appl. Catal., B 2019, 252, 120. doi: 10.1016/j.apcatb.2019.04.023  doi: 10.1016/j.apcatb.2019.04.023

    34. [34]

      Furukawa, S.; Komatsu, T. ACS Catal. 2017, 7, 735. doi: 10.1021/acscatal.6b02603  doi: 10.1021/acscatal.6b02603

    35. [35]

      Abe, H.; Matsumoto, F.; Alden, L. R.; Warren, S. C.; Abruña, H. D.; DiSalvo, F. J. J. Am. Chem. Soc. 2008, 130, 5452. doi: 10.1021/ja075061c  doi: 10.1021/ja075061c

    36. [36]

      Yan, Y.; Du, J. S.; Gilroy, K. D.; Yang, D.; Xia, Y.; Zhang, H. Adv. Mater. 2017, 29, 1605997. doi: 10.1002/adma.201605997  doi: 10.1002/adma.201605997

    37. [37]

      Wang, D.; Peng, Q.; Li, Y. Nano Res. 2010, 3, 574. doi: 10.1007/s12274-010-0018-4  doi: 10.1007/s12274-010-0018-4

    38. [38]

      Chen, Q. L.; Zhang, J. W.; Jia, Y. Y.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Nanoscale 2014, 6, 7019. doi: 10.1039/c4nr00313f  doi: 10.1039/c4nr00313f

    39. [39]

      Dong, H.; Chen, Y. C.; Feldmann, C. Green Chem. 2015, 17, 4107. doi: 10.1039/c5gc00943j  doi: 10.1039/c5gc00943j

    40. [40]

      Teichert, J.; Heise, M.; Chang, J. H.; Ruck, M. Eur. J. Inorg. Chem. 2017, 42, 4930. doi: 10.1002/ejic.201700966  doi: 10.1002/ejic.201700966

    41. [41]

      Chen, W.; Lei, Z.; Zeng, T.; Wang, L.; Cheng, N. C.; Tan, Y. Y.; Mu, S. C. Nanoscale 2019, 11, 19895. doi: 10.1039/c9nr07245d  doi: 10.1039/c9nr07245d

    42. [42]

      Bauer, J. C.; Chen, X.; Liu, Q. S.; Phan, T. H.; Schaak, R. E. J. Mater. Chem. 2008, 18, 275. doi: 10.1039/b712035d  doi: 10.1039/b712035d

    43. [43]

      Bu, L.; Zhang, N.; Guo, S; Zhang, X.; Li, J; Yao, J.; Wu, T.; Lu, G.; Ma, J.; Su, D.; et al. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    44. [44]

      Feng, Q.; Zhao, S.; He, D.; Tian, S.; Gu, L.; Wen, X.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. J. Am. Chem. Soc. 2018, 140, 2773. doi: 10.1021/jacs.7b13612  doi: 10.1021/jacs.7b13612

    45. [45]

      Luo, S.; Chen, W.; Cheng, Y.; Song, X.; Wu, Q; Li, L.; Wu, X.; Wu, T.; Li, M.; Yang, Q.; et al. Adv. Mater. 2019, 31, 1903683. doi: 10.1002/adma.201903683  doi: 10.1002/adma.201903683

    46. [46]

      Kim, J.; Lee, Y.; Sun, S. H. J. Am. Chem. Soc. 2010, 132, 14. doi: 10.1021/ja1009629  doi: 10.1021/ja1009629

    47. [47]

      Gamler, J. T. L.; Ashberry, H. M.; Skrabalak, S. E.; Koczkur, K. M. Adv. Mater. 2018, 30, 40. doi: 10.1002/adma.201801563  doi: 10.1002/adma.201801563

    48. [48]

      Li, J.; Xi, Z.; Pan, Y.; Spendelow, Jacob S.; Duchesne, Paul N.; Su, D.; Li, Q.; Yu, C.; Yin, Z.; Shen, B.; et al. J. Am. Chem. Soc. 2018, 140, 2926. doi: 10.1021/jacs.7b12829  doi: 10.1021/jacs.7b12829

    49. [49]

      Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Nat. Mater. 2012, 12, 81. doi: 10.1038/nmat3458  doi: 10.1038/nmat3458

    50. [50]

      Shim, J.; Lee, J.; Ye, Y.; Hwang, J.; Kim, S. K.; Lim, T. H.; Wiesner, U.; Lee, J. ACS Nano 2012, 6, 8. doi: 10.1021/nn301692y  doi: 10.1021/nn301692y

    51. [51]

      Zhang, B. -W.; Jiang, Y. -X.; Ren, J.; Qu, X. -M.; Xu, G. -L.; Sun, S. -G. Electrochim. Acta 2015, 162, 254. doi: 10.1016/j.electacta.2014.09.159  doi: 10.1016/j.electacta.2014.09.159

    52. [52]

      Zhang, G.; Yang, Z.; Zhang, W.; Hu, H.; Wang, C.; Huang, C.; Wang, Y. Nanoscale 2016, 8, 3075. doi: 10.1039/c5nr08013d  doi: 10.1039/c5nr08013d

    53. [53]

      Kim, J.; Rong, C.; Liu, J. P.; Sun, S. Adv. Mater. 2009, 21, 906. doi: 10.1002/adma.200801620  doi: 10.1002/adma.200801620

    54. [54]

      Kim, J.; Rong, C.; Lee, Y.; Liu, J. P.; Sun, S. Chem. Mater. 2008, 20, 7242. doi: 10.1021/cm8024878  doi: 10.1021/cm8024878

    55. [55]

      Yu, J.; Gao, W.; Liu, F.; Ju, Y.; Zhao, F.; Yang, Z.; Chu, X.; Che, S.; Hou, Y. Sci. China Mater. 2018, 61, 961. doi: 10.1007/s40843-017-9203-9  doi: 10.1007/s40843-017-9203-9

    56. [56]

      Han, A.; Zhang, J.; Sun, W.; Chen, W.; Zhang, S.; Hang, Y.; Feng, Q.; Zheng, L.; Gu, L.; Chen, C.; et al. Nat. Commun. 2019, 10, 3787. doi: 10.1038/s41467-019-11794-6  doi: 10.1038/s41467-019-11794-6

    57. [57]

      Li, Q.; Wu, L.; Wu, G.; Su, D.; Lu, H.; Zhang, S.; Zhu, W.; Casimir, A.; Zhu, H.; Mendoza-Garcia, A.; et al. Nano Lett. 2015, 15, 2468. doi: 10.1021/acs.nanolett.5b00320  doi: 10.1021/acs.nanolett.5b00320

    58. [58]

      Zhang, S.; Guo, S.; Zhu, H.; Su, D.; Sun, S. J. Am. Chem. Soc. 2012, 134, 5060. doi: 10.1021/ja300708j  doi: 10.1021/ja300708j

    59. [59]

      Zhang, S.; Zhang, X.; Jiang, G.; Zhu, H.; Guo, S.; Su, D.; Lu, G.; Sun, S. J. Am. Chem. Soc. 2014, 136, 7734. doi: 10.1021/ja5030172  doi: 10.1021/ja5030172

    60. [60]

      Bernal, S.; Calvino, J. J.; Gatica, J. M.; Larese, C.; López-Cartes, C.; Pérez-Omil, J. A. J. Catal. 1997, 169, 510. doi: 10.1006/jcat.1997.1707  doi: 10.1006/jcat.1997.1707

    61. [61]

      Li, Z.; Qi, Z.; Wang, S.; Ma, T.; Zhou, L.; Wu, Z.; Luan, X.; Lin, F.; Chen, M.; Miller, J.; et al. Nano Lett. 2019, 19, 5102. doi: 10.1021/acs.nanolett.9b01381  doi: 10.1021/acs.nanolett.9b01381

    62. [62]

      Huang, L. L.; Liu, M.; Lin, H. X.; Xu, Y. B.; Wu, J. S.; Dravid, V. P.; Wolverton, C.; Mirkin, C. A. Science 2019, 365, 1159. doi: 10.1126/science.aax5843  doi: 10.1126/science.aax5843

    63. [63]

      Komatsu, T.; Mesuda, M.; Yashima, T. Appl. Catal. A 2000, 194, 333. doi: 10.1016/S0926-860X(99)00379-8  doi: 10.1016/S0926-860X(99)00379-8

    64. [64]

      Saedy, S.; Palagin, D.; Safonova, O.; van Bokhoven, J. A.; Khodadadi, A. A.; Mortazavi, Y. J. Mater. Chem. A 2017, 5, 24396. doi: 10.1039/C7TA06737B  doi: 10.1039/C7TA06737B

    65. [65]

      Geisler, A. H.; Martin, D. L. J. Appl. Phys. 1952, 23, 375. doi: 10.1063/1.1702216  doi: 10.1063/1.1702216

    66. [66]

      Na, H.; Choi, H.; Oh, J. W.; Jung, Y. S.; Cho, Y. S. ACS Appl. Mater. Interfaces 2019, 11, 25179. doi: 10.1021/acsami.9b06159  doi: 10.1021/acsami.9b06159

    67. [67]

      Chung, D.; Jun, S.; Yoon, G.; Kwon, S.; Shin, D.; Seo, P; Yoo, J.; Shin, H.; Chung, Y.; Kim, H.; et al. J. Am. Chem. Soc. 2015, 137, 15478. doi: 10.1021/jacs.5b09653  doi: 10.1021/jacs.5b09653

    68. [68]

      Lim, S. C.; Chan, C. Y.; Chen, K. T.; Tuan, H. Y. Electrochim. Acta 2019, 297, 288. doi: 10.1016/j.electacta.2018.11.152  doi: 10.1016/j.electacta.2018.11.152

    69. [69]

      Lim, S. C.; Hsiao, M. C.; Lu, M. D.; Tung, Y. L.; Tuan, H. Y. Nanoscale 2018, 10, 16657. doi: 10.1039/c8nr03983f  doi: 10.1039/c8nr03983f

    70. [70]

      Maccio, D.; Rosalbino, F.; Saccone, A.; Delfino, S. J. Alloys Compd. 2005, 391, 60. doi: 10.1016/j.jallcom.2004.08.050  doi: 10.1016/j.jallcom.2004.08.050

    71. [71]

      Strasser, P.; Kuhl, S. Nano Energy 2016, 29, 166. doi: 10.1016/j.nanoen.2016.04.047  doi: 10.1016/j.nanoen.2016.04.047

    72. [72]

      Rößner, L.; Armbrüster, M. ACS Catal. 2019, 9, 2018. doi: 10.1021/acscatal.8b04566  doi: 10.1021/acscatal.8b04566

    73. [73]

      Leidheiser, H. J. Am. Chem. Soc. 1949, 71, 3634. doi: 10.1021/ja01179a015  doi: 10.1021/ja01179a015

    74. [74]

      Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y. H.; Karakalos, S.; Zhang, H. G.; Spendelow, J. S.; Su, D.; Wu, G. Nano Lett. 2018, 18, 4163. doi: 10.1021/acs.nanolett.8b00978  doi: 10.1021/acs.nanolett.8b00978

    75. [75]

      Gokhale, R.; Chen, Y. C.; Serov, A.; Artyushkova, K.; Atanassov, P. Electrochim. Acta 2017, 224, 49. doi: 10.1016/j.electacta.2016.12.052  doi: 10.1016/j.electacta.2016.12.052

    76. [76]

      Xiong, Y.; Xiao, L.; Yang, Y.; DiSalvo, F. J.; Abruna, H. D. Chem. Mater. 2018, 30, 1532. doi: 10.1021/acs.chemmater.7b04201  doi: 10.1021/acs.chemmater.7b04201

    77. [77]

      Zhu, H.; Luo, M. C.; Cai, Y. Z.; Sun, Z. N. Acta Phys. -Chim. Sin. 2016, 32, 2462.  doi: 10.3866/PKU.WHXB201606293

    78. [78]

      Kuttiyiel, K.; Kattel, S.; Cheng, S.; Lee, J.; Wu, L.; Zhu, Y.; Park, G.; Liu, P.; Sasaki, K.; Chen, J.; et al. ACS Appl. Energy Mater. 2018, 1, 3771. doi: 10.1021/acsaem.8b00555  doi: 10.1021/acsaem.8b00555

    79. [79]

      Wang, G. W.; Huang, B.; Xiao, L.; Ren, Z. D.; Chen, H.; Wang, D. L.; Abruna, H. D.; Lu, J. T.; Zhuang, L. J. Am. Chem. Soc. 2014, 136, 9643. doi: 10.1021/ja503315s  doi: 10.1021/ja503315s

    80. [80]

      Xiao, W.; Cordeiro, M.; Gao, G.; Zheng, A.; Wang, J.; Lei, W.; Gong, M.; Lin, R.; Stavitski, E.; Xin, H.; et al. Nano Energy 2018, 50, 70. doi: 10.1016/j.nanoen.2018.05.032  doi: 10.1016/j.nanoen.2018.05.032

    81. [81]

      Masuda, T.; Fukumitsu, H.; Fugane, K.; Togasaki, H.; Matsumura, D.; Tamura, K.; Matsumura, D.; Tamura, K.; Nishihata, Y.; Yoshikawa, H.; Kobayashi, K.; Mori, T.; et al. J. Phys. Chem. C 2012, 116, 10098. doi: 10.1021/jp301509t  doi: 10.1021/jp301509t

    82. [82]

      Sasaki, K.; Zhang, L.; Adzic, R. R. Phys. Chem. Chem. Phys. 2008, 10, 159. doi: 10.1039/b709893f  doi: 10.1039/b709893f

    83. [83]

      Wang, Y. -J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433. doi: 10.1021/cr500519c  doi: 10.1021/cr500519c

    84. [84]

      Luo, M.; Sun, Y.; Wang, L.; Guo, S. Adv. Energy Mater. 2017, 7, 11. doi: 10.1002/aenm.201602073  doi: 10.1002/aenm.201602073

    85. [85]

      Antolini, E. Appl. Catal. B 2017, 217, 201. doi: 10.1016/j.apcatb.2017.05.081  doi: 10.1016/j.apcatb.2017.05.081

    86. [86]

      Liang, J.; Miao, Z.; Ma, F.; Pan, R.; Chen, X.; Wang, T.; Xie, H.; Li, Q. Chin. J. Catal. 2018, 39, 583. doi: 10.1016/S1872-2067(17)62989-9  doi: 10.1016/S1872-2067(17)62989-9

    87. [87]

      Chen, X.; McCrum, I. T.; Schwarz, K. A.; Janik, M. J.; Koper, M. T. M. Angew. Chem. Int. Ed. 2017, 56, 15025. doi: 10.1002/anie.201709455  doi: 10.1002/anie.201709455

    88. [88]

      Park, E. D.; Lee, D.; Lee, H. C. Catal. Today 2009, 139, 280. doi: 10.1016/j.cattod.2008.06.027  doi: 10.1016/j.cattod.2008.06.027

    89. [89]

      Innocente, A. F.; Ângelo, A. C. D. J. Power Sources 2008, 175, 779. doi: 10.1016/j.jpowsour.2007.10.001  doi: 10.1016/j.jpowsour.2007.10.001

    90. [90]

      Liu, Z.; Jackson, G. S.; Eichhorn, B. W. Energy Environ. Sci. 2011, 4, 1900. doi: 10.1039/C1EE01125A  doi: 10.1039/C1EE01125A

    91. [91]

      Neurock, M.; Janik, M.; Wieckowski, A. Faraday Discuss. 2009, 140, 363. doi: 10.1039/B804591G  doi: 10.1039/B804591G

    92. [92]

      Xu, H.; Yan, B.; Li, S.; Wang, J.; Wang, C.; Guo, J.; Du, Y. Chem. Eng. J. 2018, 334, 2638. doi: 10.1016/j.cej.2017.10.175  doi: 10.1016/j.cej.2017.10.175

    93. [93]

      Zhu, J.; Zheng, X.; Wang, J.; Wu, Z.; Han, L.; Lin, R.; Xin, H. L.; Wang, D. J. Mater. Chem. A 2015, 3, 22129. doi: 10.1039/C5TA05699C  doi: 10.1039/C5TA05699C

    94. [94]

      Ramesh, G. V.; Kodiyath, R.; Tanabe, T.; Manikandan, M.; Fujita, T.; Umezawa, N.; Ueda, S.; Ishihara, S.; Ariga, K.; Abe, H. ACS Appl. Mater. Interfaces 2014, 6, 16124. doi: 10.1021/am504147q  doi: 10.1021/am504147q

    95. [95]

      Ghosh, T.; Zhou, Q.; Gregoire, J. M.; van Dover, R. B.; DiSalvo, F. J. J. Phys. Chem. C 2010, 114, 12545. doi: 10.1021/jp101175m  doi: 10.1021/jp101175m

    96. [96]

      Casado-Rivera, E.; Gál, Z.; Angelo, A. C. D.; Lind, C.; DiSalvo, F. J.; Abruña, H. D. ChemPhysChem 2003, 4, 193. doi: 10.1002/cphc.200390030  doi: 10.1002/cphc.200390030

    97. [97]

      Ji, X.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nat. Chem. 2010, 2, 286. doi: 10.1038/nchem.553  doi: 10.1038/nchem.553

    98. [98]

      Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. J. Am. Chem. Soc. 2004, 126, 4043. doi: 10.1021/ja038497a  doi: 10.1021/ja038497a

    99. [99]

      Pan, Y. -T.; Yan, Y.; Shao, Y. -T.; Zuo, J. -M.; Yang, H. Nano Lett. 2016, 16, 6599. doi: 10.1021/acs.nanolett.6b03302  doi: 10.1021/acs.nanolett.6b03302

    100. [100]

      Kang, Y.; Murray, C. B. J. Am. Chem. Soc. 2010, 132, 7568. doi: 10.1021/ja100705j  doi: 10.1021/ja100705j

    101. [101]

      Ghosh, T.; Leonard, B. M.; Zhou, Q.; DiSalvo, F. J. Chem. Mater. 2010, 22, 2190. doi: 10.1021/cm9018474  doi: 10.1021/cm9018474

    102. [102]

      Feng, Y.; Liu, H.; Yang, J. Sci. Adv. 2017, 3, e1700580. doi: 10.1126/sciadv.1700580  doi: 10.1126/sciadv.1700580

    103. [103]

      Sanetuntikul, J.; Ketpang, K.; Shanmugam, S. ACS Catal. 2015, 5, 7321. doi: 10.1021/acscatal.5b01390  doi: 10.1021/acscatal.5b01390

    104. [104]

      Zhang, B.; Sheng, T.; Wang, Y.; Qu, X.; Zhang, J.; Zhang, Z.; Liao, H.; Zhu, F.; Dou, S.; Jiang, Y.; et al. ACS Catal. 2017, 7, 892. doi: 10.1021/acscatal.6b03021  doi: 10.1021/acscatal.6b03021

    105. [105]

      Mikhailova, A. A.; Pasynskii, A. A.; Grinberg, V. A.; Velikodnyi, Y. A.; Khazova, O. A. Russ. J. Electrochem. 2010, 46, 26. doi: 10.1134/s1023193510010039  doi: 10.1134/s1023193510010039

    106. [106]

      Herranz, T.; Ibáñez, M.; Gómez de la Fuente, J. L.; Pérez-Alonso, F. J.; Peña, M. A.; Cabot, A.; Rojas, S. ChemElectroChem 2014, 1, 885. doi: 10.1002/celc.201300254  doi: 10.1002/celc.201300254

    107. [107]

      Kwak, D. -H.; Lee, Y. -W.; Han, S. -B.; Hwang, E. -T.; Park, H. -C.; Kim, M. -C.; Park, K. -W. J. Power Sources 2015, 275, 557. doi: 10.1016/j.jpowsour.2014.11.050  doi: 10.1016/j.jpowsour.2014.11.050

    108. [108]

      Ramesh, G.; Kodiyath, R.; Tanabe, T.; Manikandan, M.; Fujita, T.; Matsumoto, F.; Ishihara, S.; Ueda, S.; Yamashita, Y.; Ariga, K.; et al. ChemElectroChem 2014, 1, 728. doi: 10.1002/celc.201300240  doi: 10.1002/celc.201300240

    109. [109]

      Sun, Y.; Liang, Y.; Luo, M.; Lv, F.; Qin, Y.; Wang, L.; Xu, C.; Fu, E.; Guo, S. Small 2018, 14, 1702259. doi: 10.1002/smll.201702259  doi: 10.1002/smll.201702259

    110. [110]

      Gunji, T.; Tanabe, T.; Jeevagan, A. J.; Usui, S.; Tsuda, T.; Kaneko, S.; Saravanan, G.; Abe, H.; Matsumoto, F. J. Power Sources 2015, 273, 990. doi: 10.1016/j.jpowsour.2014.09.182  doi: 10.1016/j.jpowsour.2014.09.182

    111. [111]

      Kodiyath, R.; Ramesh, G.; Koudelkova, E.; Tanabe, T.; Ito, M.; Manikandan, M.; Ueda, S.; Fujita, T.; Umezawa, N.; Noguchi, H.; et al. Energy Environ. Sci. 2015, 8, 1685. doi: 10.1039/C4EE03746D  doi: 10.1039/C4EE03746D

    112. [112]

      Nia, N. S.; Guillen-Villafuerte, O.; Griesser, C.; Manning, G.; Kunze-Liebhauser, J.; Arevalo, C.; Pastor, E.; Garcia, G. ACS Catal. 2020, 10, 1113. doi: 10.1021/acscatal.9b04348  doi: 10.1021/acscatal.9b04348

    113. [113]

      Xue, X. Z.; Ge, J. J.; Tian, T.; Liu, C. P.; Xing, W.; Lu, T. H. J. Power Sources 2007, 172, 560. doi: 10.1016/j.jpowsour.2007.05.091  doi: 10.1016/j.jpowsour.2007.05.091

    114. [114]

      Gao, Z. F.; Chen, H.; Qi, S. T.; Yin, C. H.; Yang, B. L. Acta Phys. -Chim. Sin. 2013, 29, 1900.  doi: 10.3866/PKU.WHXB201307021

    115. [115]

      Chen, C.; Zuo, Y. X.; Ye, W. K.; Li, X. G.; Deng, Z.; Ong, S. P. Adv. Energy Mater. 2020, 10, 1903242. doi: 10.1002/aenm.201903242  doi: 10.1002/aenm.201903242

    116. [116]

      Chen, F.; Yang, Z. Y.; Wen, H.; Xu, Z. H. Acta Phys. -Chim. Sin. 1997, 13, 712.  doi: 10.3866/PKU.WHXB19970807

    117. [117]

      Han, M. R.; Zhou, Y. N.; Zhou, X.; Chu, W. Acta Phys. -Chim. Sin. 2019, 35, 850.  doi: 10.3866/PKU.WHXB201811040

    118. [118]

      Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K. -I. ACS Catal. 2020, 10, 2260. doi: 10.1021/acscatal.9b04186  doi: 10.1021/acscatal.9b04186

    119. [119]

      Li, Z.; Ma, X. F.; Xin, H. L. Catal. Today 2017, 280, 232. doi: 10.1016/j.cattod.2016.04.013  doi: 10.1016/j.cattod.2016.04.013

    120. [120]

      Li, Z.; Wang, S. W.; Chin, W. S.; Achenie, L. E.; Xin, H. L. J. Mater. Chem. A 2017, 5, 24131. doi: 10.1039/c7ta01812f  doi: 10.1039/c7ta01812f

    121. [121]

      Tran, K.; Ulissi, Z. W. Nat. Catal. 2018, 1, 696. doi: 10.1038/s41929-018-0142-1  doi: 10.1038/s41929-018-0142-1

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(27)
  • Abstract views(921)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return