Citation: Zou Liang, Tian Huihui. Upconversion Nanoparticles-Mediated Optogenetics for Minimally Invasive Neural Interface[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 200304. doi: 10.3866/PKU.WHXB202003042 shu

Upconversion Nanoparticles-Mediated Optogenetics for Minimally Invasive Neural Interface

  • Corresponding author: Tian Huihui, tianhh@nanoctr.cn
  • Received Date: 19 March 2020
    Revised Date: 22 April 2020
    Accepted Date: 22 April 2020
    Available Online: 27 April 2020

    Fund Project: the Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences XDB32030100the National Natural Science Foundation of China 61971150the National Natural Science Foundation of China 21790393The project was supported by the National Natural Science Foundation of China (21790393, 61971150) and the Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences (XDB32030100)

  • Optogenetics is a neuromodulation technology that combines light control technology with genetic technology, thus allowing the selective activation and inhibition of the electrical activity in specific types of neurons with millisecond time resolution. Over the past several years, optogenetics has become a powerful tool for understanding the organization and functions of neural circuits, and it holds great promise to treat neurological disorders. To date, the excitation wavelengths of commonly employed opsins in optogenetics are located in the visible spectrum. This poses a serious limitation for neural activity regulation because the intense absorption and scattering of visible light by tissues lead to the loss of excitation light energy and also cause tissue heating. To regulate the activity of neurons in deep brain regions, it is necessary to implant optical fibers or optoelectronic devices into target brain areas, which however can induce severe tissue damage. Non- or minimally-invasive remote control technologies that can manipulate neural activity have been highly desirable in neuroscience research. Upconversion nanoparticles (UCNPs) can emit light with a short wavelength and high frequency upon excitation by light with a long wavelength and low frequency. Therefore, UCNPs can convert low-frequency near-infrared (NIR) light into high-frequency visible light for the activation of light-sensitive proteins, thus indirectly realizing the NIR optogenetic system. Because NIR light has a large tissue penetration depth, UCNP-mediated optogenetics has attracted significant interest for deep-tissue neuromodulation. However, in UCNP-mediated in vivo optogenetic experiments, as the up-conversion efficiency of UCNPs is low, it is generally necessary to apply high-power NIR light to obtain up-converted fluorescence with energy high enough to activate a photosensitive protein. High-power NIR light can cause thermal damage to tissues, which seriously restricts the applications of UCNPs in optogenetic technology. Therefore, the exploration of strategies to increase the up-conversion efficiency, fluorescence intensity, and biocompatibility of UCNPs is of great significance to their wide applications in optogenetic systems. This review summarizes recent developments and challenges in UCNP-mediated optogenetics for deep-brain neuromodulation. We firstly discuss the correspondence between the parameters of UCNPs and employed opsins in optogenetic experiments, which mainly include excitation wavelengths, emission wavelengths, and luminescent lifetimes. Thereafter, we introduce the methods to enhance the conversion efficiency of UCNPs, including optimizing the structure of UCNPs and modifying the organic dyes in UCNPs. In addition, we also discuss the future opportunities in combining UCNP-mediated optogenetics with flexible microelectrode technology for the long-term detection and regulation of neural activity in the case of minimal injury.
  • 加载中
    1. [1]

      Boyden, E. S.; Zhang F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Nat. Neurosci. 2005, 8, 1263. doi: 10.1038/nn1525  doi: 10.1038/nn1525

    2. [2]

      Fenno, L.; Yizhar, O.; Deisseroth, K. Annu. Rev. Neurosci. 2011, 34, 389. doi: 10.1146/annurev-neuro-061010-113817  doi: 10.1146/annurev-neuro-061010-113817

    3. [3]

      Deisseroth, K. Nat. Methods 2011, 8, 26. doi: 10.1038/NMETH.F.324  doi: 10.1038/NMETH.F.324

    4. [4]

      Deisseroth, K. Nat. Neurosci. 2015, 18, 1213. doi: 10.1038/nn.4091  doi: 10.1038/nn.4091

    5. [5]

      Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 13940. doi: 10.1073/pnas.1936192100  doi: 10.1073/pnas.1936192100

    6. [6]

      Han, X.; Chow, B. Y.; Zhou, H.; Klapoetke, N. C.; Chuong, A.; Rajimehr, R.; Yang, A.; Baratta, M. V.; Winkle, J.; Desimone, R.; Boyden, E. S. Front. Syst. Neurosci. 2011, 5, 18. doi: 10.3389/fnsys.2011.00018  doi: 10.3389/fnsys.2011.00018

    7. [7]

      Han, X.; Boyden, E. S. PLoS ONE 2007, 2, e299. doi: 10.1371/journal.pone.0000299  doi: 10.1371/journal.pone.0000299

    8. [8]

      Jacques, S. L. Phys. Med. Biol. 2013, 58, 5007. doi: 10.1088/0031-9155/58/14/5007  doi: 10.1088/0031-9155/58/14/5007

    9. [9]

      Yaroslavsky, A. N.; Schulze, P. C.; Yaroslavsky, I. V.; Schober, R.; Ulrich, F.; Schwarzmaier, H. J. Phys. Med. Biol. 2002, 47, 2059. doi: 10.1088/0031-9155/47/12/305  doi: 10.1088/0031-9155/47/12/305

    10. [10]

      Zhang, F.; Gradinaru1, V.; Adamantidis, A. R.; Durand, R.; Airan, R. D.; de-Lecea, L.; Deisseroth, K. Nat. Protoc. 2010, 5, 439. doi: 10.1038/nprot.2009.226  doi: 10.1038/nprot.2009.226

    11. [11]

      Wu, F.; Stark, E.; Ku, P. C.; Wise, K. D.; Buzsáki, G.; Yoon, E. Neuron 2015, 88, 1136. doi: 10.1016/j.neuron.2015.10.032  doi: 10.1016/j.neuron.2015.10.032

    12. [12]

      McCall, J. G.; Kim, T.; Shin, G.; Huang, X.; Jung, Y. H.; Al-Hasani, R.; Omenetto, F. G.; Bruchas, M. R.; Rogers, J. A. Nat. Protoc. 2013, 8, 2413. doi: 10.1038/nprot.2013.158  doi: 10.1038/nprot.2013.158

    13. [13]

      Kim T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y.; Song, J.; Song, Y. M.; Pao, H. A.; Kim, R. H.; et al. Science 2013, 340, 211. doi: 10.1126/science.1232437  doi: 10.1126/science.1232437

    14. [14]

      Adamantidis, A. R.; Zhang, F.; Aravanis, A. M.; Deisseroth, K.; de Lecea, L. Nature 2007, 450, 420. doi: 10.1016/S1389-9457(11)70067-3  doi: 10.1016/S1389-9457(11)70067-3

    15. [15]

      Li, Y. M.; Wang, Y.; Chen, H. D.; Wang, Y. J.; Liu, Y. Y.; Pei, W. H. Acta Phys. -Chim. Sin. 2020, 36, 1912054.  doi: 10.3866/PKU.WHXB201912054

    16. [16]

      Bedbrook, C. N.; Yang, K. K.; Gradinaru, V.; Arnold, F. H.; Robinson, J. E.; Mackey, E. D.; Gradinaru, V.; Arnold, F. H. Nat. Methods 2019, 16, 1176. doi: 10.1038/s41592-019-0583-8  doi: 10.1038/s41592-019-0583-8

    17. [17]

      Zhang, F.; Prigge, M.; Beyrière, F.; Tsunoda, S. P.; Mattis, J.; Yizhar, O.; Hegemann, P.; Deisseroth, K. Nat. Neurosci. 2008, 11, 631. doi: 10.1038/nn.2120  doi: 10.1038/nn.2120

    18. [18]

      Lin, J. Y.; Knutsen, P. M.; Muller, A.; Kleinfeld, D.; Tsien, R. Y. Nat. Neurosci. 2013, 16, 1499. doi: 10.1038/nn.3502  doi: 10.1038/nn.3502

    19. [19]

      Yizhar, O.; Fenno, L. E.; Prigge, M.; Schneider, F.; Davidson, T. J.; O'Shea, D. J.; Sohal, V. S.; Goshen, I.; Finkelstein, J.; Paz, J. T.; et al. Nature 2011, 477, 171. doi: 10.1038/nature10360  doi: 10.1038/nature10360

    20. [20]

      Klapoetke, N. C.; Murata, Y.; Kim, S. S.; Pulver, S. R.; Birdsey-Benson, A.; Cho, Y. K.; Morimoto, T. K.; Chuong, A. S.; Carpenter, E. J.; Tian, Z.; Wang, J.; et al. Nat. Methods 2014, 11, 338. doi: 10.1038/NMETH.2836  doi: 10.1038/NMETH.2836

    21. [21]

      Miyazaki, T.; Chowdhury, S.; Yamashita, T.; Matsubara, T.; Yawo, H.; Yuasa, H.; Yamanaka, A. Cell Rep. 2019, 26, 1033. doi: 10.1016/j.celrep.2019.01.001  doi: 10.1016/j.celrep.2019.01.001

    22. [22]

      Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Chem. Rev. 2015, 115, 395. doi: 10.1021/cr400478f  doi: 10.1021/cr400478f

    23. [23]

      Weissleder, R. Nat. Biotechnol. 2001, 19, 316. doi: org/10.1038/86684.  doi: 10.1038/86684

    24. [24]

      Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotech. 2009, 4, 710. doi: 10.1038/nnano.2009.326  doi: 10.1038/nnano.2009.326

    25. [25]

      Shi, L.; Sordillo, L. A.; Rodríguez-Contreras, A.; Alfano, R. J. Biophotonics 2016, 9, 38. doi: 10.1002/jbio.201500192  doi: 10.1002/jbio.201500192

    26. [26]

      Pansare, V. J.; Hejazi, S.; Faenza, W. J.; Prud'homme, R. K. Chem. Mater. 2012, 24, 812. doi: 10.1021/cm2028367  doi: 10.1021/cm2028367

    27. [27]

      Yi, G. S.; Chow, G. M. Adv. Funct. Mater. 2006, 16, 2324. doi: 10.1002/adfm.200600053  doi: 10.1002/adfm.200600053

    28. [28]

      Shen, J.; Chen, G.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G. Adv. Opt. Mater. 2013, 1, 644. doi: 10.1002/adom.201300160  doi: 10.1002/adom.201300160

    29. [29]

      Ye, S.; Song, J.; Chen, L. C.; Wang, D.; Peng, X.; Qu, J. L. Acta Opt. Sin. 2015, 35, 221. doi: 10.3788/AOS201535.0816005  doi: 10.3788/AOS201535.0816005

    30. [30]

      Kou, L. H.; Labrie, D.; Chylek, P. Appl. Opt. 1993, 32, 3531. doi: 10.1364/AO.32.003531  doi: 10.1364/AO.32.003531

    31. [31]

      Fan, Y.; Wang, S.; Zhang, F. Angew. Chem. Int. Ed. 2019, 58, 13208. doi: 10.1002/anie.201901964  doi: 10.1002/anie.201901964

    32. [32]

      Zhou, L.; Wang, R.; Yao, C.; Li, X.; Wang, C.; Zhang, X.; Xu, C.; Zeng, A.; Zhao, D.; Zhang, F. Nat. Commun. 2015, 24, 6938. doi: 10.1038/ncomms7938  doi: 10.1038/ncomms7938

    33. [33]

      Zhan, Q. Q.; Qian, J.; Liang, H. J.; Somesfalean, G.; Andersson-Engels, S. ACS Nano 2011, 5, 3744. doi: 10.1021/nn200110j  doi: 10.1021/nn200110j

    34. [34]

      Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Nat. Mater. 2011, 10, 968. doi: 10.1038/nmat3149  doi: 10.1038/nmat3149

    35. [35]

      Zhou, B.; Yang, W.; Han, S.; Sun, Q.; Liu, X. Adv. Mater. 2015, 27, 6208. doi: 10.1002/adma.201503482  doi: 10.1002/adma.201503482

    36. [36]

      Lu, Y.; Zhao, J.; Zhang, R.; Liu, Y.; Liu, D.; Goldys, E. M. Yang, X.; Xi, P.; Sunna, A.; Lu, J.; et al. Nat. Photon. 2014, 8, 32. doi: 10.1038/nphoton.2013.322  doi: 10.1038/nphoton.2013.322

    37. [37]

      Ortgies, D. H.; Tan, M.; Ximendes, E. C.; Rosal, B. D.; Hu, J.; Wang, L. X. X.; Rodriguez, E. M.; Jacinto, C.; Rernandez, N.; Chen, G.; et al. ACS Nano 2018, 12, 4362. doi: 10.1021/acsnano.7b09189  doi: 10.1021/acsnano.7b09189

    38. [38]

      Zheng, W.; Zhou, S.; Chen, Z.; Hu, P.; Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Huang, M.; Chen, X. Angew. Chem. Int. Ed. 2013, 52, 6671. doi: 10.1002/anie.201302481  doi: 10.1002/anie.201302481

    39. [39]

      Wang, Y.; Deng, R.; Xie, X.; Huang, L.; Liu, X. Nanoscale 2016, 8, 6666. doi: 10.1039/C6NR00812G  doi: 10.1039/C6NR00812G

    40. [40]

      Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E.; et al. Nat. Nanotech. 2014, 9, 300. doi: 10.1038/NNANO.2014.29  doi: 10.1038/NNANO.2014.29

    41. [41]

      Zhou, L.; Fan, Y.; Wang, R.; Li, X.; Fan, L.; Zhang, F. Angew. Chem. Int. Ed. 2018, 57, 12824. doi: 10.1002/anie.201808209  doi: 10.1002/anie.201808209

    42. [42]

      Lu, Y.; Lu, J.; Zhao, J.; Cusido, J.; Raymo, F. M.; Yuan, J.; Yang, S.; Leif, R. C.; Huo, Y.; Piper, J. A.; et al. Nat. Commun. 2014, 5, 3741. doi: 10.1038/ncomms4741  doi: 10.1038/ncomms4741

    43. [43]

      Yi, G. S.; Chow, G. M. Chem. Mater. 2007, 19, 341. doi: 10.1021/cm062447y  doi: 10.1021/cm062447y

    44. [44]

      Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan. C. H. J. Phys. Chem. C 2007, 111, 13721. doi: 10.1021/jp073920d.  doi: 10.1021/jp073920d

    45. [45]

      Ansari, A. A.; Yadav, R.; Rai, S. B. RSC Adv. 2016, 6, 22074. doi: 10.1039/C6RA00265J  doi: 10.1039/C6RA00265J

    46. [46]

      Schäfer, B. H.; Ptacek, P.; Zerzouf, O.; Haase, M. Adv. Funct. Mater. 2008, 18, 2913. doi: 10.1002/adfm.200800368  doi: 10.1002/adfm.200800368

    47. [47]

      Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. Adv. Funct. Mater. 2009, 19, 2924. doi: 10.1002/adfm.200900234  doi: 10.1002/adfm.200900234

    48. [48]

      Qian, H. S.; Zhang, Y. Langmuir 2008, 24, 12123. doi: 10.1021/la802343f  doi: 10.1021/la802343f

    49. [49]

      Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. Adv. Mater. 2010, 22, 3266. doi: 10.1002/adma.201000128.  doi: 10.1002/adma.201000128

    50. [50]

      Yang, D.; Li, C.; Li, G.; Shang, M.; Kang, X.; Lin, J. J. Mater. Chem. 2011, 21, 5923. doi: 10.1039/c0jm04179c  doi: 10.1039/c0jm04179c

    51. [51]

      Ghosh, P.; Oliva, J.; De la Rosa, E.; Haldar, K. K.; Solis, D.; Patra, A. J. Phys. Chem. C 2008, 112, 9650. doi: 10.1021/jp801978b  doi: 10.1021/jp801978b

    52. [52]

      Liu, X.; Kong, X.; Zhang, Y.; Tu, L.; Wang, Y.; Zeng, Q.; Li, C.; Shic, Z.; Zhang, H. Chem. Commun. 2011, 4, 11957. doi: 10.1039/c1cc14774a  doi: 10.1039/c1cc14774a

    53. [53]

      Chen, D.; Yu, Y.; Huang, F.; Lin, H.; Huang, P.; Yang, A.; Wang, Z.; Wang, Y. J. Mater. Chem. 2012, 22, 2632. doi: 10.1039/C1JM14589D  doi: 10.1039/C1JM14589D

    54. [54]

      Zhang, Y.; Liu, X.; Lang, Y.; Yuan, Z.; Zhao, D.; Qin, G.; Qin, W. J. Mat. Chem. C 2015, 3, 2045. doi: 10.1039/c4tc02541e  doi: 10.1039/c4tc02541e

    55. [55]

      Zou, W.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Nat. Photonics 2012, 6, 560. doi: 10.1038/nphoton.2012.158  doi: 10.1038/nphoton.2012.158

    56. [56]

      Wu, X.; Lee, H.; Bilsel, O.; Zhang, Y.; Li, Z.; Chen, T.; Liu, Y.; Duan, C; Shen, J.; Punjabi, A.; Han, G. Nanoscale 2015, 7, 18424. doi: 10.1039/C5NR05437K  doi: 10.1039/C5NR05437K

    57. [57]

      Lee, J.; Yoo, B.; Lee, H.; Cha, G. D.; Lee, H. S.; Cho, Y.; Kim, S. Y.; Seo, H.; Lee, W.; Son, D.; et al. Adv Mater. 2017, 29, 1603169. doi: 10.1002/adma.201603169  doi: 10.1002/adma.201603169

    58. [58]

      Chen, G.; Damasco, J.; Qiu, H.; Shao, W.; Ohulchanskyy, T. Y.; Valiev, R. R.; Wu, X.; Han, G.; Wang, Y.; Yang, C.; et al. Nano Lett. 2015, 15, 7400. doi: 10.1021/acs.nanolett.5b02830  doi: 10.1021/acs.nanolett.5b02830

    59. [59]

      Wu, X., Zhang, Y.; Takle, K.; Bilsel, O.; Li, Z.; Lee, H.; Zhang, Z.; Li, D.; Fan, W.; Duan, C.; et al. ACS Nano 2016, 10, 1060. doi: 10.1021/acsnano.5b06383  doi: 10.1021/acsnano.5b06383

    60. [60]

      Hososhima, S.; Yuasa, H.; Ishizuka, T.; Hoque, M.; Yamashita, T.; Yamanaka, A.; Sugano, E.; Tomita, H.; Yawo, H. Sci. Rep. 2015, 5, 16533. doi: 10.1038/srep16533  doi: 10.1038/srep16533

    61. [61]

      Shah, S.; Liu, J.; Pasquale, N.; Lai, J.; McGowan, H.; Pang, Z. P.; Lee, K. B. Nanoscale 2015, 7, 16571. doi: 10.1039/C5NR03411F  doi: 10.1039/C5NR03411F

    62. [62]

      Bansal, A.; Liu, H.; Jayakumar, M. K. G.; Andersson-Engels, S.; Zhang, Y. Small 2016, 12, 1732. doi: 10.1002/smll.201503792  doi: 10.1002/smll.201503792

    63. [63]

      Ai, X.; Lyu, L.; Zhang, Y.; Tang, Y.; Mu, J.; Liu, F.; Zhou, Y.; Zuo, Z.; Liu, G.; Xing, B. Angew. Chem. Int. Ed. 2017, 56, 3031. doi: 10.1002/anie.201612142  doi: 10.1002/anie.201612142

    64. [64]

      Lin, X.; Wang, Y.; Chen, X.; Yang, R.; Wang, Z.; Feng, J.; Wang, H.; Lai, K. W. C.; He, J.; Wang, F.; Shi, P. Adv. Healthcare Mater. 2017, 6, 1700446. doi: 10.1002/adhm.201700446  doi: 10.1002/adhm.201700446

    65. [65]

      Wang, Y.; Lin, X.; Chen, X.; Chen, X.; Xu, Z.; Zhang, W.; Liao, Q.; Duan, X.; Wang, X.; Liu, M.; et al. Biomaterials 2017, 142, 136. doi: 10.1016/j.biomaterials.2017.07.017  doi: 10.1016/j.biomaterials.2017.07.017

    66. [66]

      Mattis, J.; Tye, K. M.; Ferenczi, E. A.; Ramakrishnan, C.; O'Shea, D. J.; Prakash, R.; Gunaydin, L. A.; Hyun, M.; Fenno, L. E.; Gradinaru, V.; et al. Nat. Methods 2011, 9, 159. doi: 10.1038/nmeth.1808  doi: 10.1038/nmeth.1808

    67. [67]

      Lin, X.; Chen, X.; Zhang, W.; Sun, T.; Fang, P.; Liao, Q.; Chen, X.; He, J.; Liu, M.; Wang, F.; Shi, P. Nano Lett. 2018, 18, 948. doi: 10.1021/acs.nanolett.7b04339  doi: 10.1021/acs.nanolett.7b04339

    68. [68]

      Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; Parajuli, L. K.; et al. Science 2018, 359, 679. doi: 10.1126/science.aaq1144  doi: 10.1126/science.aaq1144

    69. [69]

      Buzsáki, G.; Stark, E.; Berényi, A.; Khodagholy, D.; Kipke, D. R.; Yoon, E.; Wise, K. D. Neuron 2015, 86, 92. doi: 10.1016/j.neuron.2015.01.028  doi: 10.1016/j.neuron.2015.01.028

    70. [70]

      Alivisatos, A. P.; Chun, M.; Church, G. M.; Deisseroth, K.; Donoghue, J. P.; Greenspan, R. J.; McEuen, P. L.; Roukes, M. L.; Sejnowski, T. J.; Weiss, P. S.; Yuste, R. Science 2013, 339, 1284. doi: 10.1126/science.1236939  doi: 10.1126/science.1236939

    71. [71]

      Buzsaki, G. Nat. Neurosci. 2004, 7, 446. doi: 10.1038/nn1233  doi: 10.1038/nn1233

    72. [72]

      Carandini, M. Nat. Neurosci. 2012, 15, 507. doi: 10.1038/nn.3043  doi: 10.1038/nn.3043

    73. [73]

      Nicolelis, M. A. L.; Ghazanfar, A. A.; Faggin, B. M.; Votaw, S.; Oliveira, L. M. O. Neuron 1997, 18, 529. doi: 10.1016/S0896-6273(00)80295-0  doi: 10.1016/S0896-6273(00)80295-0

    74. [74]

      Liu, J.; Fu, T. M.; Cheng, Z.; Hong, G.; Zhou, T.; Jin, L.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C.; et al. Nat. Nanotech. 2015, 10, 629. doi: 10.1038/nnano.2015.115  doi: 10.1038/nnano.2015.115

    75. [75]

      Guan, S.; Wang, J.; Gu, X.; Zhao, Y.; Hou, R.; Fan, H.; Zou, L.; Gao, L.; Du, M.; Li, C.; Fang, Y. Sci. Adv. 2019, 5, eaav2842. doi: 10.1126/sciadv.aav2842  doi: 10.1126/sciadv.aav2842

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    6. [6]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    15. [15]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    16. [16]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    17. [17]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(6)
  • Abstract views(976)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return