Citation: Yujie Tang, Mo Zheng, Chunxing Ren, Xiaoxia Li, Li Guo. Visualized Reaction Tracking and Physical Property Analysis for a Picked 3D Area in a Reactive Molecular Dynamics Simulation System[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200303. doi: 10.3866/PKU.WHXB202003037 shu

Visualized Reaction Tracking and Physical Property Analysis for a Picked 3D Area in a Reactive Molecular Dynamics Simulation System

  • Corresponding author: Xiaoxia Li, xxia@ipe.ac.cn
  • Received Date: 16 March 2020
    Revised Date: 7 April 2020
    Accepted Date: 10 April 2020
    Available Online: 14 April 2020

    Fund Project: the National Key Research and Development Plan of China 2016YFB0600302National Natural Science Foundation of China 91641102National Natural Science Foundation of China 91434105National Natural Science Foundation of China 21606231

  • Recently, the application of ReaxFF based reactive molecular dynamics simulation (ReaxFF MD) in complex processes of pyrolysis, oxidation and catalysis has attracted considerable attention. The analysis of the simulation results of these processes is challenging owing to the complex chemical reactions involved, coupled with their dynamic physical properties. VARxMD is a leading tool for the chemical reaction analysis and visualization of ReaxFF MD simulations, which allows the automated analysis of reaction sites to get overall reaction lists, evolution trends of reactants and products, and reaction networks of specified reactants and products. The visualization of the reaction details and dynamic evolution profiles are readily available for each reactant and product. Additionally, the detailed reaction sites of bond breaking and formation are available in 2D chemical structure diagrams and 3D structure views; for specified reactions, they are categorized on the basis of the chemical structures of the bonding sites or function groups in the reacting species. However, the current VARxMD code mainly focuses on global chemical reaction information in the simulation system of the ReaxFF MD, and is incapable of locally tracking the chemical reaction and physical properties in a 3D picked zone. This work extends the VARxMD from global analysis to a focused 3D zone picked interactively from the 3D visualization modules of VARxMD, as well as physical property analysis to complement reaction analysis. The analysis of reactions and physical properties can be implemented in three steps: picking and drawing a 3D zone, identifying molecules in the picked zone, and analyzing the reactions and physical properties of the picked molecules. A 3D zone can be picked by specifying the geometric parameters or drawing on a screen using a mouse. The picking of a cuboid or sphere was implemented using the VTK 3D view libraries by specifying geometric parameters. The interactive 3D zone picking was implemented using a combination of observer and command patterns in the VTK visualization paradigm. The chemical reaction tracking and dynamic radial distribution function (RDF) of the 3D picked zone was efficiently implemented by inheriting data obtained from the global analysis of VARxMD. The reaction tracking between coal particles in coal pyrolysis simulation and dynamic structure characterization of carbon rich cluster formation in the thermal decomposition of an energetic material are presented as application examples. The obtained detailed reactions between the coal particles and comparison of the reaction between the locally and globally picked areas in the cuboid are helpful in understanding the role of micro pores in coal particles. The carbon to carbon RDF analysis and comparison of the spherical region picked for the layered molecular clusters in the pyrolysis system of the TNT crystal model with the standard RDF of the 5-layer graphene demonstrate the extended VARxMD as a chemical structure characteristic tool for detecting the dynamic formation profile of carbon rich clusters in the pyrolysis of TNT. The extended capability of VARxMD for a 3D picked zone of a ReaxFF MD simulation system can be useful for interfacial reaction analysis in a catalysis system, hot spot formation analysis in the detonation of energetic material systems, and particularly the pyrolysis or oxidation processes of coal, biomass, polymers, hydrocarbon fuels, and energetic materials.
  • 加载中
    1. [1]

      van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u  doi: 10.1021/jp004368u

    2. [2]

      https://lammps.sandia.gov/ (accessed Apr. 8, 2020).

    3. [3]

      https://www.scm.com/product/reaxff/ (accessed Apr. 8, 2020).

    4. [4]

      https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/ / (accessed Apr. 8, 2020).

    5. [5]

      Carter Edwards, H.; Trott, C. R.; Sunderland, D. J. Parallel Distrib. Comput 2014, 74, 3202. doi: 10.1016/j.jpdc.2014.07.003  doi: 10.1016/j.jpdc.2014.07.003

    6. [6]

      Dontgen, M.; Przybylski-Freund, M. D.; Kroger, L. C.; Kopp, W. A.; Ismail, A. E.; Leonhard, K. J. Chem. Theory Comput 2015, 11, 2517. doi: 10.1021/acs.jctc.5b00201  doi: 10.1021/acs.jctc.5b00201

    7. [7]

      https://www.scienomics.com/analyze/ (accessed Apr. 8, 2020).

    8. [8]

      Zeng, J.; Cao, L.; Chin, C. -H.; Ren, H.; Zhang, J. Z.; Zhu, T. Phys. Chem. Chem. Phys 2020, 22, 683. doi: 10.1039/C9CP05091D  doi: 10.1039/C9CP05091D

    9. [9]

      Wu, Y.; Sun, H.; Wu, L.; Deetz, J. D. J. Comput. Chem. 2019, 40, 1586. doi: 10.1002/jcc.2580  doi: 10.1002/jcc.2580

    10. [10]

      Zheng, M.; Li, X.; Guo, L. J. Mol. Graph. Model. 2013, 41, 1. doi: 10.1016/j.jmgm.2013.02.001  doi: 10.1016/j.jmgm.2013.02.001

    11. [11]

      Liu, J.; Li, X.; Guo, L.; Zheng, M.; Han, J.; Yuan, X.; Nie, F.; Liu, X. J. Mol. Graph. Model. 2014, 53, 13. doi: 10.1016/j.jmgm.2014.07.002  doi: 10.1016/j.jmgm.2014.07.002

    12. [12]

      Liu, J.; Li, X.; Guo, L.; Zheng, M.; Han, J; Yuan, X; Nie, F.; Liu, X. Comp. App. Chem. 2014, 31, 641.  doi: 10.11719/com.app.chem20140601

    13. [13]

      Han, J.; Li, X.; Guo, L.; Zheng, M.; Qiao, X.; Liu, X.; Gao, M.; Zhang, T.; Han, S. Comp. App. Chem. 2015, 32, 519.  doi: 10.11719/com.app.chem20150502

    14. [14]

      He, Q.; Ren, C; Li, X; Guo, L.; Zhang, T.; Gao, M.; Han, S. Comp. App. Chem 2019, 36, 299.  doi: 10.16866/j.com.app.chem201904001

    15. [15]

      Zhang, T.; Li, X.; Guo, L.; Guo, X. Energy Fuels 2019, 33, 11210. doi: 10.1021/acs.energyfuels.9b02843  doi: 10.1021/acs.energyfuels.9b02843

    16. [16]

      Zhao, P.; Han, S.; Li, X.; Zhu, T.; Tao, X.; Guo, L. Energy Fuels 2019, 33, 7176. doi: 10.1021/acs.energyfuels.9b01321  doi: 10.1021/acs.energyfuels.9b01321

    17. [17]

      Zheng, M.; Li, X.; Wang, M.; Guo, L. Fuel 2019, 253, 910. doi: 10.1016/j.fuel.2019.05.085  doi: 10.1016/j.fuel.2019.05.085

    18. [18]

      Ren, C.; Li, X.; Guo, L. J. Chem. Inf. Model. 2019, 59, 2079. doi: 10.1021/acs.jcim.8b00952  doi: 10.1021/acs.jcim.8b00952

    19. [19]

      Schroeder, W.; Martin, K.; Lorensen, B. The Visualization Toolkit: An Object-Oriented Approach to 3d Graphics, 4th ed.; Kitware, Inc.: Clifton Park, NY, USA, 2018; pp. 35-80.

    20. [20]

      Zheng, M.; Li, X.; Liu, J.; Wang, Z.; Gong, X.; Guo, L.; Song, W. Energy Fuels 2014, 28, 522. doi: 10.1021/ef402140n  doi: 10.1021/ef402140n

    21. [21]

      Zheng, M.; Li, X.; Guo, L. Fuel 2018, 233, 867. doi: 10.1016/j.fuel.2018.06.133  doi: 10.1016/j.fuel.2018.06.133

    22. [22]

      Gao, M.; Li, X.; Guo, L. Fuel Process. Technol 2018, 178, 197. doi: 10.1016/j.fuproc.2018.05.011  doi: 10.1016/j.fuproc.2018.05.011

    23. [23]

      Shi, L. Study on the Cleavage of Covalent Bonds in Coal Pyrolysis from Various Temperature Stages. Ph. D. Dissertation, Beijing University of Chemical Technology: Beijing, 2014.

    24. [24]

      Furman, D.; Kosloff, R.; Dubnikova, F.; Zybin, S. V.; Goddard, W. A.; Rom, N.; Hirshberg, B.; Zeiri, Y. J. Am. Chem. Soc. 2014, 136, 4192. doi: 10.1021/ja410020f  doi: 10.1021/ja410020f

    25. [25]

      Rom, N.; Hirshberg, B.; Zeiri, Y.; Furman, D.; Zybin, S. V.; Goddard, W. A.; Kosloff, R. J. Phys. Chem. C 2013, 117, 21043. doi: 10.1021/jp404907b  doi: 10.1021/jp404907b

    26. [26]

      Strachan, A.; van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; Goddard, W. A. Phys. Rev. Lett 2003, 91, 098301. doi: 10.1103/PhysRevLett.91.098301  doi: 10.1103/PhysRevLett.91.098301

    27. [27]

      An, Q.; Goddard, W. A.; Zybin, S. V.; Jaramillo-Botero, A.; Zhou, T. J. Phys. Chem. C 2013, 117, 26551. doi: 10.1021/jp404753v  doi: 10.1021/jp404753v

    28. [28]

      Guo, D.; An, Q.; Goddard, W. A.; Zybin, S. V.; Huang, F. J. Phys. Chem. C 2014, 118, 30202. doi: 10.1021/jp5093527  doi: 10.1021/jp5093527

    29. [29]

      Greiner, N. R.; Phillips, D. S.; Johnson, J. D.; Volk, F. Nature 1988, 333, 440. doi: 10.1038/333440a0  doi: 10.1038/333440a0

    30. [30]

      Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. Nat. Nanotechnol. 2012, 7, 11. doi: 10.1038/nnano.2011.209  doi: 10.1038/nnano.2011.209

  • 加载中
    1. [1]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    2. [2]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    3. [3]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    4. [4]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    5. [5]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    15. [15]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(9)
  • Abstract views(314)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return