Citation: Ya Guo, Piao Jin, Minhua Shao, Shigang Dong, Ronggui Du, Changjian Lin. Effect of an Environmentally Friendly Diisooctyl Sebacate-based Mixed Corrosion Inhibitor on Reinforcing Steel[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200303. doi: 10.3866/PKU.WHXB202003033 shu

Effect of an Environmentally Friendly Diisooctyl Sebacate-based Mixed Corrosion Inhibitor on Reinforcing Steel

  • Corresponding author: Ronggui Du, rgdu@xmu.edu.cn
  • Received Date: 14 March 2020
    Revised Date: 23 April 2020
    Accepted Date: 12 May 2020
    Available Online: 18 May 2020

    Fund Project: the National Natural Science Foundation of China 51731008the National Natural Science Foundation of China 21573182the National Natural Science Foundation of China 21073151the National Natural Science Foundation of China 21203158

  • Corrosion protection of reinforcing steel in concrete is an urgent task in modern society. Use of corrosion inhibitors in concrete is an effective, simple, and economical method for protecting reinforcing steel from corrosion. Mixed corrosion inhibitors usually perform better than a single inhibitor in actual reinforced concrete systems because of their synergistic inhibition effects. In recent years, environmentally friendly corrosion inhibitors have attracted increasing attention from corrosion researchers. Diisooctyl sebacate and sodium D-gluconate are environmentally friendly organic corrosion inhibitors, and ZnSO4 is an inorganic cathodic inhibitor, they may form an innovative, nontoxic, and pollution-free mixed corrosion inhibitor to control reinforcing steel corrosion. Additionally, diisooctyl sebacate and sodium D-gluconate serve as absorption-type inhibitors, and ZnSO4 acts as a precipitation-type inhibitor. We hypothesized that their combination might show a good synergistic corrosion inhibition effect on reinforcing steel. In this study, we developed a diisooctyl sebacate-based mixed corrosion inhibitor that includes D-gluconate and ZnSO4 and investigated its synergistic inhibition effects on reinforcing steel (Q235 steel) corrosion in a simulated polluted concrete pore solution. The reinforcing steel corrosion behavior and the properties of the mixed corrosion inhibitor were studied by polarization curve measurements, electrochemical impedance spectroscopy tests, and surface analysis methods (scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy). The results indicated that the reinforcing steel in the simulated polluted concrete pore solution (pH 11.00, 0.5 mol·L-1 NaCl) was in an active dissolving state and that localized corrosion took place. The mixed corrosion inhibitor, consisting of diisooctyl sebacate (59 mmol·L-1), sodium D-gluconate (0.5 mmol·L-1), and ZnSO4 (1.5 mmol·L-1), had an obvious and powerful inhibition effect. Its inhibition efficiency reached 96.8% and 90.0% in the simulated polluted concrete pore solution and the cement mortar, respectively. The mixture of diisooctyl sebacate with sodium D-gluconate and ZnSO4 acted as a mixed-type inhibitor and effectively controlled both anodic and cathodic reactions of the steel corrosion.
  • 加载中
    1. [1]

      Kumar, V. Corros. Rev. 1998, 16, 317. doi: 10.1515/CORRREV.1998.16.4.317  doi: 10.1515/CORRREV.1998.16.4.317

    2. [2]

      Thangavel, K. Corros. Rev. 2004, 22, 55. doi: 10.1515/corrrev.2004.22.1.55  doi: 10.1515/corrrev.2004.22.1.55

    3. [3]

      Ahmad, S. Cement Concrete. Comp. 2003, 25, 459. doi: 10.1016/S0958-9465(02)00086-0  doi: 10.1016/S0958-9465(02)00086-0

    4. [4]

      Huet, B.; L'Hostis, V.; Miserque, F.; Idrissi, H. Electrochim. Acta 2005, 51, 172. doi: 10.1016/j.electacta.2005.04.014  doi: 10.1016/j.electacta.2005.04.014

    5. [5]

      Xu, H.; Liu, Y.; Chen, W.; Du, R. G.; Lin, C. J. Electrochim. Acta 2009, 54, 4067. doi: 10.1016/j.electacta.2009.02.046  doi: 10.1016/j.electacta.2009.02.046

    6. [6]

      Hu, R. G.; Huang, R. S.; Du, R. G.; Lin, C. J. Acta Phys. -Chim. Sin. 2003, 19, 46.  doi: 10.3866/PKU.WHXB20030111

    7. [7]

      Du, R. G.; Hu, R. G.; Huang, R. S.; Lin, C. J. Anal. Chem. 2006, 78, 3179. doi: 10.1021/ac0517139  doi: 10.1021/ac0517139

    8. [8]

      Verbruggen, H.; Baert, K.; Terryn, H.; De Graeve, I. Surf. Coat. Technol. 2019, 361, 280. doi: 10.1016/j.surfcoat.2018.09.056  doi: 10.1016/j.surfcoat.2018.09.056

    9. [9]

      Tan, Z. Q.; Hansson, C. M. Corros. Sci. 2008, 50, 2512. doi: 10.1016/j.corsci.2008.06.035  doi: 10.1016/j.corsci.2008.06.035

    10. [10]

      Goyal, A.; Pouya, H. S.; Ganjian, E. Constr. Build. Mater. 2019, 223, 1083. doi: 10.1016/j.conbuildmat.2019.07.344  doi: 10.1016/j.conbuildmat.2019.07.344

    11. [11]

      Shalabi, K.; Nazeer, A. A. J. Mol. Struct. 2019, 1195, 863. doi: 10.1016/j.molstruc.2019.06.033  doi: 10.1016/j.molstruc.2019.06.033

    12. [12]

      Yang, R. J.; Guo, Y.; Tang, F. M.; Wang, X. P.; Du, R. G.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 1923.  doi: 10.3866/PKU.WHXB201205292

    13. [13]

      Zheng, H. B.; Li, W. H.; Ma, F. B.; Kong, Q. L. Cem. Concr. Res. 2014, 55, 102. doi: 10.1016/j.cemconres.2013.10.005  doi: 10.1016/j.cemconres.2013.10.005

    14. [14]

      Ormellese, M.; Lazzari, L.; Goidanich, S.; Fumagalli, G.; Brenna, A. Corros. Sci. 2009, 51, 2959. doi: 10.1016/j.corsci.2009.08.018  doi: 10.1016/j.corsci.2009.08.018

    15. [15]

      Girčienė, O.; Ramanauskas, R.; Gudavičiūtė, L.; Martušienė, A. Corrosion 2011, 67, 125001. doi: 10.5006/1.3665355  doi: 10.5006/1.3665355

    16. [16]

      Manjula, P. E J. Chem. 2009, 6, 887. doi: 10.1155/2009/859218  doi: 10.1155/2009/859218

    17. [17]

      Rajendran, S.; Reenkala, S. M.; Anthony, N.; Ramaraj, R. Corros. Sci. 2002, 44, 2243. doi: 10.1016/S0010-938X(02)00052-5  doi: 10.1016/S0010-938X(02)00052-5

    18. [18]

      Ashassi-Sorkhabi, H.; Asghari, E. J. Electrochem. Soc. 2012, 159, C1. doi: 10.1149/2.006201jes  doi: 10.1149/2.006201jes

    19. [19]

      Mohamed, K. E. M.; Ibrahim, O. H; El-Bedawy, M. E; Ali, A. H. J. Radiat. Res. Appl. Sci. 2020, 13, 276. doi: 10.1080/16878507.2020.1730603  doi: 10.1080/16878507.2020.1730603

    20. [20]

      Refaey, S. Appl. Surf. Sci. 2000, 157, 199. doi: 10.1016/S0169-4332(99)00573-5  doi: 10.1016/S0169-4332(99)00573-5

    21. [21]

      Otani, K.; Sakairi, M.; Islam, M. S. Corros. Rev. 2018, 36, 105. doi: 10.1515/corrrev-2017-0047  doi: 10.1515/corrrev-2017-0047

    22. [22]

      Loto, R. T.; Fajobi, M.; Oluwole, O.; Loto, C. A. Cogent Engineering 2020, 7, 1712155. doi: 10.1080/23311916.2020.1712155  doi: 10.1080/23311916.2020.1712155

    23. [23]

      Ivusic, F.; Lahodny-Sarc, O.; Curkovic, H. O.; Alar, V. Corros. Sci. 2015, 98, 88. doi: 10.1016/j.corsci.2015.05.017  doi: 10.1016/j.corsci.2015.05.017

    24. [24]

      Wu, L. L.; Zhang, Y. J.; Yang, G. B.; Zhang, S. M.; Yu, L. G. Zhang, P. Y. RSC Adv. 2016, 6, 69836. doi: 10.1039/c6ra10042b  doi: 10.1039/c6ra10042b

    25. [25]

      Lu, Z. Y.; Cao, Z. Z.; Hu, E. Z.; Hu, K. H.; Hu, X. G. Tribol. Int. 2019, 130, 308. doi: 10.1016/j.triboint.2018.09.030  doi: 10.1016/j.triboint.2018.09.030

    26. [26]

      Wang, X.; Zeng, H. L.; Zhao, L. X.; Lin, J. M. Talanta 2006, 70, 160. doi: 10.1016/j.talanta.2006.01.006  doi: 10.1016/j.talanta.2006.01.006

    27. [27]

      Kitowski, C. J.; Wheat, H. G. Corrosion 1997, 53, 216. doi: 10.5006/1.3280463  doi: 10.5006/1.3280463

    28. [28]

      Gao, Y. B.; Hu, J.; Zuo, J.; Liu, Q.; Zhang, H.; Dong, S. G.; Du, R. G.; Lin, C. J. J. Electrochem. Soc. 2015, 162, C555. doi: 10.1149/2.0641510jes  doi: 10.1149/2.0641510jes

    29. [29]

      Bastidas, D. M.; La Iglesia, V. M.; Criado, M.; Fajardo, S.; La Iglesia, A.; Bastidas, J. M. Constr. Build. Mater. 2010, 24, 2646. doi: 10.1016/j.conbuildmat.2010.04.060  doi: 10.1016/j.conbuildmat.2010.04.060

    30. [30]

      McCarter, W. J.; Vennesland, O. Constr. Build. Mater. 2004, 18, 351. doi: 10.1016/j.conbuildmat.2004.03.008  doi: 10.1016/j.conbuildmat.2004.03.008

    31. [31]

      Morris, W.; Vico, A.; Vazquez, M.; de Sanchez, S. R. Corros. Sci. 2002, 44, 81. doi: 10.1016/S0010-938X(01)00033-6  doi: 10.1016/S0010-938X(01)00033-6

    32. [32]

      Hackerman, N.; Hurd, R. M. Corrosion inhibition and molecular structure. In First International Congress on Metallic Corrosion, London, April 10–15, 1961; Kenworthy, L. Ed.; Butterworths: London, 1962.

    33. [33]

      Esta Abelev, D. S.; Ein-Eli, Yair. Electrochim. Acta 2007, 52, 1975. doi: 10.1016/j.electacta.2006.08.012  doi: 10.1016/j.electacta.2006.08.012

    34. [34]

      Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001  doi: 10.1021/ja00905a001

    35. [35]

      Aramaki, K.; Shimura, T. Corros. Sci. 2004, 46, 2563. doi: 10.1016/j.corsci.2004.01.024  doi: 10.1016/j.corsci.2004.01.024

    36. [36]

      Hamadou, L.; Kadri, A.; Benbrahim, N. Appl. Surf. Sci. 2005, 252, 1510. doi: 10.1016/j.apsusc.2005.02.135  doi: 10.1016/j.apsusc.2005.02.135

    37. [37]

      Sagues, A. A.; Kranc, S. C.; Moreno, E. I. Corros. Sci. 1995, 37, 1097. doi: 10.1016/0010-938X(95)00017-E  doi: 10.1016/0010-938X(95)00017-E

    38. [38]

      Sagues, A. A.; Kranc, S. C.; Moreno, E. I. Electrochim. Acta 1996, 41, 1239. doi: 10.1016/0013-4686(95)00476-9  doi: 10.1016/0013-4686(95)00476-9

    39. [39]

      Berthier, F.; Diard, J. P.; Michel, R. J. Electroanal. Chem. 2001, 510, 1. doi: 10.1016/S0022-0728(01)00554-X  doi: 10.1016/S0022-0728(01)00554-X

    40. [40]

      Neves, R. S.; De Robertis, E.; Motheo, A. J. Electrochim. Acta 2006, 51, 1215. doi: 10.1016/j.electacta.2005.06.013  doi: 10.1016/j.electacta.2005.06.013

    41. [41]

      Dawson, J. L.; Ferreira, M. G. S. Corros. Sci. 1986, 26, 1009. doi: 10.1016/0010-938X(86)90130-7  doi: 10.1016/0010-938X(86)90130-7

    42. [42]

      Kaesche, H. Corrosion of Metals: Physicochemical Principles and Current Problems; Springer-Verlag: Berlin, Heidelberg, 2003; pp. 98–16.

    43. [43]

      Rammelt, U.; Reinhard, G. Electrochim. Acta 1990, 35, 1045. doi: 10.1016/0013-4686(90)90040-7  doi: 10.1016/0013-4686(90)90040-7

    44. [44]

      Leibig, M.; Halsey, T. C. Electrochim. Acta 1993, 38, 1985. doi: 10.1016/0013-4686(93)80328-W  doi: 10.1016/0013-4686(93)80328-W

    45. [45]

      Benedetti, A. V.; Sumodjo, P. T. A.; Nobe, K.; Cabot, P. L.; Proud, W. G. Electrochim. Acta 1995, 40, 2657. doi: 10.1016/0013-4686(95)00108-Q  doi: 10.1016/0013-4686(95)00108-Q

    46. [46]

      Luo, H.; Dong, C. F.; Li, X. G.; Xiao, K. Electrochim. Acta 2012, 64, 211. doi: 10.1016/j.electacta.2012.01.025  doi: 10.1016/j.electacta.2012.01.025

    47. [47]

      Della Rovere, C. A.; Alano, J. H.; Silva, R.; Nascente, P. A. P.; Otubo, J.; Kuri, S. E. Corros. Sci. 2012, 57, 154. doi: 10.1016/j.corsci.2011.12.022  doi: 10.1016/j.corsci.2011.12.022

    48. [48]

      Abreu, C. M.; Cristobal, M. J.; Losada, R.; Novoa, X. R.; Pena, G.; Perez, M. C. Electrochim. Acta 2006, 51, 1881. doi: 10.1016/j.electacta.2005.06.040  doi: 10.1016/j.electacta.2005.06.040

    49. [49]

      Neal, A. L.; Techkarnjanaruk, S.; Dohnalkova, A.; McCready, D.; Peyton, B. M.; Geesey, G. G. Geochim. Cosmochim. Ac. 2001, 65, 223. doi: 10.1016/S0016-7037(00)00537-8  doi: 10.1016/S0016-7037(00)00537-8

    50. [50]

      Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. Chem. Mater. 1990, 2, 186. doi: 10.1021/cm00008a021  doi: 10.1021/cm00008a021

    51. [51]

      Singh, J. K.; Singh, D. D. N. Corros. Sci. 2012, 56, 129. doi: 10.1016/j.corsci.2011.11.012  doi: 10.1016/j.corsci.2011.11.012

    52. [52]

      Nakayama, N.; Obuchi, A. Corros. Sci. 2003, 45, 2075. doi: 10.1016/S0010-938X(03)00032-5  doi: 10.1016/S0010-938X(03)00032-5

    53. [53]

      Zhou, X.; Yang, H. Y.; Wang, F. H. Electrochim. Acta 2011, 56, 4268. doi: 10.1016/j.electacta.2011.01.081  doi: 10.1016/j.electacta.2011.01.081

    54. [54]

      Aramaki, K. Corros. Sci. 2002, 44, 1621. doi: 10.1016/S0010-938X(01)00171-8  doi: 10.1016/S0010-938X(01)00171-8

    55. [55]

      Nieuwoudt, M. K.; Comins, J. D.; Cukrowski, I. J. Raman Spectrosc. 2011, 42, 1335. doi: 10.1002/jrs.2837  doi: 10.1002/jrs.2837

    56. [56]

      Froment, F.; Tournie, A.; Colomban, P. J. Raman Spectrosc. 2008, 39, 560. doi: 10.1002/jrs.1858  doi: 10.1002/jrs.1858

    57. [57]

      Neff, D.; Bellot-Gurlet, L.; Dillmann, P.; Reguer, S.; Legrand, L. J. Raman Spectrosc. 2006, 37, 1228. doi: 10.1002/jrs.1581  doi: 10.1002/jrs.1581

    58. [58]

      Reguer, S.; Neff, D.; Bellot-Gurlet, L.; Dillmann, P. J. Raman Spectrosc. 2007, 38, 389. doi: 10.1002/jrs.1659  doi: 10.1002/jrs.1659

  • 加载中
    1. [1]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    2. [2]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    3. [3]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    4. [4]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    5. [5]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    6. [6]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    7. [7]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    8. [8]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    9. [9]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    10. [10]

      Qinming Wu Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310

    11. [11]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    12. [12]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    13. [13]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    14. [14]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    15. [15]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

Metrics
  • PDF Downloads(8)
  • Abstract views(194)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return