Citation: Mingkai Chang, Na Hu, Yao Li, Dongfan Xian, Wanqiang Zhou, Jingyi Wang, Yanlin Shi, Chunli Liu. Sorption of Eu(Ⅲ) on Montmorillonite and Effects of Carbonate and Phosphate on Its Sorption[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200303. doi: 10.3866/PKU.WHXB202003031 shu

Sorption of Eu(Ⅲ) on Montmorillonite and Effects of Carbonate and Phosphate on Its Sorption

  • Corresponding author: Chunli Liu, liucl@pku.edu.cn
  • Received Date: 13 March 2020
    Revised Date: 16 April 2020
    Accepted Date: 17 April 2020
    Available Online: 27 April 2020

    Fund Project: the National Natural Science Foundation of China U1730245the National Natural Science Foundation of China U1530112the National Natural Science Foundation of China 11475008

  • The environmental behaviours of actinides and fission products have been highly concerned due to their potential risks to human beings after entering the body through inhalation or food chains. The chemical reactions of actinides and fission products at mineral-water interface are the most important factors influencing the sorption, diffusion, migration and other processes of actinides and fission products in natural environments. Therefore, it is of great importance to investigate the chemical behaviours of these radioactive elements or nuclides in terms of environmental safety, especially in the area of safety assessment for geological disposal of high level radioactive wastes. However, the chemical behaviours of nuclides at mineral-water interface are complex and the investigations at a molecular level are challenging. To understand the chemical behaviours of trivalent actinides An(Ⅲ) in depth, non-radioactive Eu(Ⅲ) is used as an analogue of An(Ⅲ) due to their similar ionic sizes and chemical characteristics. In this study, batch sorption experiments and spectroscopic characterization methods were used to study the surface sorption species of Eu(Ⅲ) on montmorillonite and possible sorption mechanisms. We studied the effects of solid-liquid ratio, contacting time, ionic strength, pH, carbonate and phosphate on Eu(Ⅲ) sorption on montmorillonite. Our results indicated that the sorption percentage of Eu(Ⅲ) on montmorillonite was low in the range of pH 3.0 to 6.0, and much higher in the range of pH 7.0 to 10.0. The increase of ionic strength inhibited the sorption of Eu(Ⅲ) at low pH values, suggesting that the sorption of Eu(Ⅲ) on montmorillonite was mainly outer-sphere complexation in low pH conditions. Based on the results of fluorescence analysis, we can conclude that the sorption of Eu(Ⅲ) on montmorillonite is mainly outer-sphere complexation in low pH conditions, inner-sphere complexation in neutral pH conditions and surface induced precipitations in high pH conditions. Furthermore, we studied the sorption behaviours of Eu(Ⅲ) not only in montmorillonite/Eu(Ⅲ) binary system but also in montmorillonite/Eu(Ⅲ)/anion ternary system. Our results indicated that carbonate and phosphate could also influence the sorption of Eu(Ⅲ). Carbonate did not have an obvious influence on the sorption amount of Eu(Ⅲ), but it helped to change the surface sorption species of Eu(Ⅲ) on montmorillonite in high pH conditions. As for phosphate, although the sorption of phosphate onto montmorillonite was very weak, it could significantly enhance the sorption of Eu(Ⅲ) on montmorillonite. Because there were no reference data about fluorescence lifetime of Eu(Ⅲ)-phosphate species, we did XPS measurements and phosphate sorption experiments to find out the reason for phosphate enhancing effect. Our results proved that Eu(Ⅲ) precipitated as EuPO4 on the surface of montmorillonite resulting in the enhancement of Eu(Ⅲ) sorption. This work is expected to provide a deeper understanding of the chemical behaviours of trivalent actinides An(Ⅲ) at mineral-water interface and predict the migration of An(Ⅲ) in the environment.
  • 加载中
    1. [1]

      Tian, W. Y.; Li, C.; Liu, X. Y.; Wang, L. H.; Zheng, Z.; Wang, X. Y.; Liu, C. L. J. Radioanal. Nucl. Chem. 2013, 295, 1423. doi: 10.1007/s10967-012-2284-y  doi: 10.1007/s10967-012-2284-y

    2. [2]

      Dong, Y. H.; Liu, Z. J.; Li, Y. Y. J. Radioanal. Nucl. Chem. 2011, 289, 257. doi: 10.1007/s10967-011-1072-4  doi: 10.1007/s10967-011-1072-4

    3. [3]

      Qi, L. Y.; Yang, X. Y.; Wang, C. L.; Zhou, W. Q.; Liu, C. L. J. Nucl. Radiochem. 2018, 40, 112.  doi: 10.7538/hhx.2017.YX.2017016

    4. [4]

      Bruno, J.; Ewing, R. C. Elements 2006, 2, 343. doi: 10.2113/gselements.2.6.343  doi: 10.2113/gselements.2.6.343

    5. [5]

      Seaborg, G. T. Radiochim. Acta 1993, 61, 115. doi: 10.1524/ract.1993.61.34.115  doi: 10.1524/ract.1993.61.34.115

    6. [6]

      Rabung, T.; Stumpf, T.; Geckeis, H.; Klenze, R.; Kim, J. I. Radiochim. Acta 2000, 88, 711. doi: 10.1524/ract.2000.88.9-11.711  doi: 10.1524/ract.2000.88.9-11.711

    7. [7]

      McCarthy, J. F.; Sanford, W. E.; Stafford, P. L. Environ. Sci. Technol. 1998, 32, 3901. doi: 10.1021/es971004f  doi: 10.1021/es971004f

    8. [8]

      Liatsou, I.; Efstathiou, M.; Pashalidis, I. J. Radioanal. Nucl. Chem. 2015, 304, 41. doi: 10.1007/s10967-014-3448-8  doi: 10.1007/s10967-014-3448-8

    9. [9]

      Fan, Q. H.; Tan, X. L.; Li, J. X.; Wang, X. K.; Wu, W. S.; Montavon, G. Environ. Sci. Technol. 2009, 43, 5776. doi: 10.1021/es901241f  doi: 10.1021/es901241f

    10. [10]

      Jin, Q.; Wang, G.; Ge, M. T.; Chen, Z. Y.; Wu, W. S.; Guo, Z. J. Appl. Geochem. 2014, 47, 17. doi: 10.1016/j.apgeochem.2014.05.004  doi: 10.1016/j.apgeochem.2014.05.004

    11. [11]

      Bradbury, M. H.; Baeyens, B.; Geckeis, H.; Rabung, T. Geochim. Cosmochim. Acta 2005, 69, 5403. doi: 10.1016/j.gca.2005.06.031  doi: 10.1016/j.gca.2005.06.031

    12. [12]

      Geckeis, H.; Lutzenkirchen, J.; Polly, R.; Rabung, T.; Schmidt, M. Chem. Rev. 2013, 113, 1016. doi: 10.1021/cr300370h  doi: 10.1021/cr300370h

    13. [13]

      Xu, X. Y.; Liao, Y. Q.; Sun, J. C.; Wang, X. H.; Chen, S. Q.; Lv, Z.; Song, J. Q. Acta Phys. -Chim. Sin. 2019, 35, 317.  doi: 10.3866/PKU.WHXB201805021

    14. [14]

      Chen, Z. Y.; Zhang, R.; Yang, X. L.; Wu, W. S.; Guo, Z. J.; Liu, C. L. Acta Phys. -Chim. Sin. 2013, 29, 2019.  doi: 10.3866/PKU.WHXB201306271

    15. [15]

      Wen, X.; Wu, Y.; Su, J.; Zhang, Y.; Liu, F. Environ. Geol. 2005, 48, 665. doi: 10.1007/s00254-005-0001-7  doi: 10.1007/s00254-005-0001-7

    16. [16]

      Wu, P.; Tang, C.; Zhu, L.; Liu, C.; Cha, X.; Tao, X. Hydrol. Processes 2009, 23, 2012. doi: 10.1002/hyp.7332  doi: 10.1002/hyp.7332

    17. [17]

      Pernet-Coudrier, B.; Qi, W.; Liu, H.; Mueller, B.; Berg, M. Environ. Sci. Technol. 2012, 46, 5294. doi: 10.1021/es3004415  doi: 10.1021/es3004415

    18. [18]

      Zhou, Q. X.; Gibson, C. E.; Zhu, Y. M. Chemosphere 2001, 42, 221. doi: 10.1016/s0045-6535(00)00129-6  doi: 10.1016/s0045-6535(00)00129-6

    19. [19]

      Dejneka, M.; Snitzer, E.; Riman, R. E. J. Lumin. 1995, 65, 227. doi: 10.1016/0022-2313(95)00073-9  doi: 10.1016/0022-2313(95)00073-9

    20. [20]

      Zhang, B. B.; Miao, M. Y.; Bai, J.; Yuan, G. J.; Jia, Y. Y.; Han, Z. X.; Zhao, Z. G.; Su, H. Q. Adv. Mater. Res. 2014, 962, 809. doi: 10.4028/www.scientific.net/AMR.962-965.809  doi: 10.4028/www.scientific.net/AMR.962-965.809

    21. [21]

      Myllykyla, E.; Tanhua-Tyrkko, M.; Bouchet, A.; Tiljander, M. Clay Miner. 2013, 48, 295. doi: 10.1180/claymin.2013.048.2.11  doi: 10.1180/claymin.2013.048.2.11

    22. [22]

      Kinniburgh, D.; Cooper, D. PhreePlot, version 1; Phreeplot Inc.: Bangor, Gwynedd, UK, 2011.

    23. [23]

      Plancque, G.; Maurice, Y.; Moulin, V.; Toulhoat, P.; Moulin, C. Appl. Spectrosc. 2005, 59, 432. doi: 10.1366/0003702053641540  doi: 10.1366/0003702053641540

    24. [24]

      Pan, D. Q.; Fan, F. Y.; Wang, Y. C.; Li, P.; Hu, P. Z.; Fan, Q. H.; Wu, W. S. Chem. Eng. J. 2017, 330, 559. doi: 10.1016/j.cej.2017.07.184  doi: 10.1016/j.cej.2017.07.184

    25. [25]

      Tertre, E.; Berger, G.; Simoni, E.; Castet, S.; Giffaut, E.; Loubet, M.; Catalette, H. Geochim. Cosmochim. Acta 2006, 70, 4563. doi: 10.1016/j.gca.2006.06.1568  doi: 10.1016/j.gca.2006.06.1568

    26. [26]

      Rabung, T.; Pierret, M. C.; Bauer, A.; Geckeis, H.; Bradbury, M. H.; Baeyens, B. Geochim. Cosmochim. Acta 2005, 69, 5393. doi: 10.1016/j.gca.2005.06.030  doi: 10.1016/j.gca.2005.06.030

    27. [27]

      Horrocks, W. D.; Sudnick, D. R. J. Am. Chem. Soc. 1979, 101, 334. doi: 10.1021/ja00496a010  doi: 10.1021/ja00496a010

    28. [28]

      Plancque, G.; Moulin, V.; Toulhoat, P.; Moulin, C. Anal. Chim. Acta 2003, 478, 11. doi: 10.1016/s0003-2670(02)01486-1  doi: 10.1016/s0003-2670(02)01486-1

    29. [29]

      Kowal-Fouchard, A.; Drot, R.; Simoni, E.; Marmier, N.; Fromage, F.; Ehrhardt, J. J. New J. Chem. 2004, 28, 864. doi: 10.1039/b400306c  doi: 10.1039/b400306c

    30. [30]

      Hartmann, E.; Baeyens, B.; Bradbury, M. H.; Geckeis, H.; Stumpft, T. Environ. Sci. Technol. 2008, 42, 7601. doi: 10.1021/es801092f  doi: 10.1021/es801092f

    31. [31]

      Ishida, K.; Saito, T.; Aoyagi, N.; Kimura, T.; Nagaishi, R.; Nagasaki, S.; Tanaka, S. J. Colloid Interface Sci. 2012, 374, 258. doi: 10.1016/j.jcis.2012.01.060  doi: 10.1016/j.jcis.2012.01.060

    32. [32]

      Takahashi, Y.; Kimura, T.; Kato, Y.; Minai, Y.; Tominaga, T. Radiochim. Acta 1998, 82, 227.

    33. [33]

      Lochhead, M. J.; Bray, K. L. Chem. Mater. 1995, 7, 572. doi: 10.1021/cm00051a019  doi: 10.1021/cm00051a019

    34. [34]

      Ford, R. G.; Scheinost, A. C.; Sparks, D. L. Adv. Agron. 2001, 74, 41. doi: 10.1016/s0065-2113(01)74030-8  doi: 10.1016/s0065-2113(01)74030-8

    35. [35]

      Oday, P. A.; ChisholmBrause, C. J.; Towle, S. N.; Parks, G. A.; Brown, G. E. Geochim. Cosmochim. Acta 1996, 60, 2515. doi: 10.1016/0016-7037(96)00114-7  doi: 10.1016/0016-7037(96)00114-7

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    14. [14]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    17. [17]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    18. [18]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    19. [19]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(10)
  • Abstract views(400)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return