Citation: Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200302. doi: 10.3866/PKU.WHXB202003022 shu

Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering

  • Corresponding author: Qun Luo, qluo2011@sinano.ac.cn Chang-Qi Ma, cqma2011@sinano.ac.cn
  • The two authors contributed equally to the work.
  • Received Date: 9 March 2020
    Revised Date: 5 April 2020
    Accepted Date: 6 April 2020
    Available Online: 15 April 2020

    Fund Project: the Natural Science Foundation of Jiangsu Province, China BK20181197the Natural Science Foundation of Jiangxi Province, China 20181BAB206017the Youth Innovation Promotion Association, CAS 2019317the National Natural Science Foundation of China 51773224

  • Perovskite solar cells (PSCs) attract much attention for their high efficiency and low processing cost. Power conversion efficiencies (PCEs) higher than 25% have been reported in literature, demonstrating the excellent application prospect of PSCs. In general, the crystallinity and the film composition of perovskite thin films are significant factors in determining device performance. Much effort has been made to control the growth process of perovskite films through the use of additives, passivation layers, special atmosphere treatments, precursor regulation etc. Among these methods, precursor solvent engineering is a simple and direct way to control the perovskite quality, but the controllability of components through solvent engineering is still difficult and has not yet been reported. Herein, we report the controlled formation of PbI2 and PbI2 with dimethyl sulfoxide (DMSO) nano domains through precursor solvent engineering. In particular, tuning the solvent content of the dimethyl sulfoxide: 1, 4-butyrolactone: N, N-dimethylformamide (DMSO : GBL : DMF) in the perovskite precursor solution, controlled the content of PbI2 and PbI2(DMSO) domains. Due to the lower boiling point and weaker coordination of DMF relative to DMSO, part of methylammonium iodide (MAI) would escape from the wet films during the evaporation process. Therefore, the PbI2(DMSO) can't completely convert to perovskite crystals and is retained in the final films as residual PbI2(DMSO) domains. Both UV-vis absorption spectrum and XRD spectrum confirmed the existence of PbI2 and PbI2(DMSO) domains. Importantly, the content of PbI2(DMSO) was controllable by simply changing the relative proportion of DMF. With an increase in the DMF content, the residual PbI2(DMSO) domains gradually increase. In addition, the influence of PbI2 and PbI2(DMSO) domains on the device performance was systematically investigated. The formation of PbI2(DMSO) domains caused a decrease in external quantum efficiency (EQE) of the device over 300–425 nm, and consequently decreased the device performance. That was because the PbI2(DMSO) domain has strong absorption over 300–425 nm. Therefore, the PbI2(DMSO) domains would absorb the photons over 300–425 nm prior to the perovskite, however the photons absorbed by the PbI2(DMSO) domains are not converted into the photocurrent. Thus, the perovskite solar cell containing PbI2(DMSO) showed an EQE loss over 300–425 nm in the EQE spectra. This work provides a simple method to control the components, especially the content of the PbI2(DMSO) domains, in perovskite films through regulating the precursor solvent. Additionally, this work revealed a PbI2(DMSO) domain related EQE loss phenomenon, highlighting the importance of controlling this component.
  • 加载中
    1. [1]

      Saliba, M.; Correa-Baena, J. P.; Wolff, C. M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Abate, A. Chem. Mater. 2018, 30, 4193. doi: 10.1021/acs.chemmater.8b0013  doi: 10.1021/acs.chemmater.8b0013

    2. [2]

      Zhumekenov, A. A.; Saidaminov, M. I.; Haque, M. A.; Alarousu, E.; Sarmah, S. P.; Murali, B.; Dursun, I.; Miao, X. H.; Abdelhady, A. L.; Wu, T.; et al. ACS Energy Lett. 2016, 1, 32. doi: 10.1021/acsenergylett.6b00002  doi: 10.1021/acsenergylett.6b00002

    3. [3]

      Liu, X.; Zhang, Y. F.; Shi, L.; Liu, Z. H.; Huang, J. L.; Yun, J. S.; Zeng, Y. Y.; Pu, A. B.; Sun, K. W.; Hameiri, Z.; et al. Adv. Energy Mater. 2018, 8. 1800138.1. doi: 10.1002/aenm.201800138

    4. [4]

      Ju, D. X.; Dang, Y. Y.; Zhu, Z. L.; Liu, H. B.; Chueh, C. C.; Li, X. S.; Wang, L.; Hu, X. B.; Jen, A. K. Y.; Tao, X. T. Chem. Mater. 2018, 30, 1556. doi: 10.1021/acs.chemmater.7b04565  doi: 10.1021/acs.chemmater.7b04565

    5. [5]

      Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; et al. Science 2016, 354, 206. doi: 10.1126/science.aah5557  doi: 10.1126/science.aah5557

    6. [6]

      He, M.; Zheng, D. J.; Wang, M. Y.; Lin, C. J.; Lin, Z. Q. J. Mater. Chem. A 2014, 2, 5994. doi: 10.1039/c3ta14160h  doi: 10.1039/c3ta14160h

    7. [7]

      Cai, F. L.; Yang, L. Y.; Yan, Y.; Zhang, J. H.; Qin, F.; Liu, D.; Cheng, Y. B.; Zhou, Y. H.; Wang, T. J. Mater. Chem. A 2017, 5, 9402. doi: 10.1039/c7ta02317k  doi: 10.1039/c7ta02317k

    8. [8]

      Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Nature 2019, 567, 511. doi: 10.1038/s41586-019-1036-3  doi: 10.1038/s41586-019-1036-3

    9. [9]

      Wang, Y.; Zhou, Y. Y.; Zhang, T. Y.; Ju, M. G.; Zhang, L.; Kan, M.; Li, Y. H.; Zeng, X. C.; Padture, N. P.; Zhao, Y. X. Mater. Horiz. 2018, 5, 868. doi: 10.1039/c8mh00511g  doi: 10.1039/c8mh00511g

    10. [10]

      Gao, L. L.; Li, C. X.; Li, C. J.; Yang, G. J. J. Mater. Chem. A 2017, 5, 1548. doi: 10.1039/c6ta09565h  doi: 10.1039/c6ta09565h

    11. [11]

      Chang, C. Y.; Chang, Y. C.; Huang, W. K.; Liao, W. C.; Wang, H.; Yeh, C.; Tsai, B. C.; Huang, Y. C.; Tsao, C. S. J. Mater. Chem. A 2016, 4, 7903. doi: 10.1039/c6ta02581a  doi: 10.1039/c6ta02581a

    12. [12]

      Liu, D.; Zhou, W.; Tang, H.; Fu, P.; Ning, Z. Sci. China Chem. 2018, 61, 1278. doi: 10.1007/s11426-018-9250-6  doi: 10.1007/s11426-018-9250-6

    13. [13]

      Li, S.; Yang, B.; Wu, R.; Zhang, C.; Zhang, C.; Tang, X. F.; Liu, G.; Liu, P.; Zhou, C.; Gao, Y.; Meng, J. Q.; et al. Org. Electron. 2016, 39, 304. doi: 10.1016/j.orgel.2016.10.017  doi: 10.1016/j.orgel.2016.10.017

    14. [14]

      Xie, M.; Lu, H.; Zhang, L.; Wang, J.; Luo, Q.; Lin, J.; Ba, L.; Liu, H.; Shen, W.; Shi, L.; et al. Sol. RRL 2018, 2, 1700184. doi: 10.1002/solr.201700184  doi: 10.1002/solr.201700184

    15. [15]

      Wang, J.; Chen, X.; Jiang, F.; Luo, Q.; Zhang, L.; Tan, M.; Xie, M.; Li, Y. Q.; Zhou, Y.; Su, W.; et al. Sol. RRL 2018, 2, 1800118. doi: 10.1002/solr.201800118  doi: 10.1002/solr.201800118

    16. [16]

      Yu, J. C.; Badgujar, S.; Jung, E. D.; Singh, V. K.; Kim, D. W.; Gierschner, J.; Lee, E.; Kim, Y. S.; Cho, S.; Kwon, M. S.; et al. Adv. Mater. 2018, 31, 1805554. doi: 10.1002/adma.201805554  doi: 10.1002/adma.201805554

    17. [17]

      Peng, Y.; Cheng, Y.; Wang, C.; Zhang, C.; Xia, H.; Huang, K.; Tong, S.; Hao, X.; Yang, J. Org. Electron. 2018, 58, 153. doi: 10.1016/j.orgel.2018.04.020  doi: 10.1016/j.orgel.2018.04.020

    18. [18]

      Stoddard, R. J.; Rajagopal, A.; Palmer, R. L.; Braly, I. L.; Jen, A. K. Y.; Hillhouse, H. W. ACS Energy Lett. 2018, 3, 1261. doi: 10.1021/acsenergylett.8b00576  doi: 10.1021/acsenergylett.8b00576

    19. [19]

      Liu, L.; Huang, S.; Lu, Y.; Liu, P.; Zhao, Y.; Shi, C.; Zhang, S.; Wu, J.; Zhong, H.; Sui, M.; et al. Adv. Mater. 2018, 30, e1800544. doi: 10.1002/adma.201800544  doi: 10.1002/adma.201800544

    20. [20]

      Tang, W. L.; Bowring, A. R.; Meng, A. C.; McGehee, M. D.; McIntyre, P. C. ACS Appl. Mater. Interfaces 2018, 10, 5485. doi: 10.1021/acsami.7b15263  doi: 10.1021/acsami.7b15263

    21. [21]

      Sun, H. X.; Deng, K. M.; Zhu, Y. Y.; Liao, M.; Xiong, J.; Li, Y. R.; Li, L. Adv. Mater. 2018, 30. 1801935. doi: 10.1002/adma.201801935  doi: 10.1002/adma.201801935

    22. [22]

      Singh, R.; Kumar, M.; Shukla, V. K. J. Electron. Mater. 2018, 47, 6894. doi: 10.1007/s11664-018-6614-x  doi: 10.1007/s11664-018-6614-x

    23. [23]

      Ng, C. H.; Lim, H. N.; Hayase, S.; Zainal, Z.; Huang, N. M. Renew. Sust. Energy Rev. 2018, 90, 248. doi: 10.1016/j.rser.2018.03.030  doi: 10.1016/j.rser.2018.03.030

    24. [24]

      Mo, J. J.; Zhang, C. F.; Chang, J. J.; Yang, H. F.; Xi, H.; Chen, D. Z.; Lin, Z. H.; Lu, G.; Zhang, J. C.; Hao, Y. J. Mater. Chem. A 2017, 5, 13032. doi: 10.1039/c7ta01517h  doi: 10.1039/c7ta01517h

    25. [25]

      Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yang, W. S.; Seo, J.; Yun, J. S.; Ho-Baillie, A.; Huang, S. J.; Green, M. A.; Seidel, J.; et al. Adv. Energy Mater. 2016, 6. doi: 10.1002/aenm.201502104  doi: 10.1002/aenm.201502104

    26. [26]

      Gao, F.; Zhao, Y.; Zhang, X. W.; You, J. B. Adv. Energy Mater. 2019, 10, 1902650, doi: 10.1002/aenm.201902650  doi: 10.1002/aenm.201902650

    27. [27]

      Aydin, E.; De Bastiani, M.; De Wolf, S. Adv. Mater. 2019, 31, e1900428. doi: 10.1002/adma.201900428  doi: 10.1002/adma.201900428

    28. [28]

      Jiang, F.; Rong Y.; Liu H. Adv. Funct. Mater. 2016, 26, 8119. doi: 10.1002/adfm.201603968  doi: 10.1002/adfm.201603968

    29. [29]

      Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Adv. Mater. 2017, 29. 1703852. doi: 10.1002/adma.201703852  doi: 10.1002/adma.201703852

    30. [30]

      Li, J. J.; Ma, J. Y.; Hu, J. S.; Wang, D.; Wan, L. J. ACS Appl. Mater. Interfaces 2016, 8, 26002. doi: 10.1021/acsami.6b07647.  doi: 10.1021/acsami.6b07647

    31. [31]

      Carretero-Palacios, S.; Calvo, M. E.; Miguez, H. J. Phys. Chem. C 2015, 119, 18635. doi: 10.1021/acs.jpcc.5b06473  doi: 10.1021/acs.jpcc.5b06473

    32. [32]

      Song, X.; Wang, W. W.; Sun, P.; Ma, W. L.; Chen, Z. K. Appl. Phys. Lett. 2015, 106. 033901.1. doi: 10.1063/1.4906073  doi: 10.1063/1.4906073

    33. [33]

      Jamal, M. S.; Bashar, M. S.; Hasan, A. K. M.; Almutairi, Z. A.; Alharbi, H. F.; Alharthi, N. H.; Karim, M. R.; Misran, H.; Amin, N.; Bin Sopian, K.; et al. Renew. Sust. Energy Rev. 2018, 98, 469. doi: 10.1016/j.rser.2018.09.016  doi: 10.1016/j.rser.2018.09.016

    34. [34]

      Ansari, M. I. H.; Qurashi, A.; Nazeeruddin, M. K. J. Photochem. Photobiol. C 2018, 35, 1. doi: 10.1016/j.jphotochemrev.2017.11.002  doi: 10.1016/j.jphotochemrev.2017.11.002

    35. [35]

      Tan, M.; Ji, G.; Zhang, L.; Wang, J.; Wang, C.; Chen, Q.; Luo, Q.; Chen, L.; Ma, C. Q. Org. Electron. 2018, 59, 358. doi: 10.1016/j.orgel.2018.05.044  doi: 10.1016/j.orgel.2018.05.044

    36. [36]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1002/admi.201500768  doi: 10.1002/admi.201500768

    37. [37]

      Bi, D. Q.; Yi, C. Y.; Luo, J. S.; Decoppet, J. D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Gratzel, M. Nat. Energy 2016, 1. 16142. doi: 10.1038/Nenergy.2016.142  doi: 10.1038/Nenergy.2016.142

    38. [38]

      Jo, Y.; Oh, K. S.; Kim, M.; Kim, K. H.; Lee, H.; Lee, C. W.; Kim, D. S. Adv. Mater. Interfaces 2016, 3. 10. doi: 10.1002/admi.201500768  doi: 10.1002/admi.201500768

    39. [39]

      Xiong, H.; DeLuca, G.; Rui, Y. C.; Li, Y. G.; Reichmanis, E.; Zhang, Q. H.; Wang, H. Z. Sol. Energy Mater. Sol. Cells 2017, 166, 167. doi: 10.1016/j. solmat. 2017.03.028

    40. [40]

      Yin, G.; Zhao, H.; Jiang, H.; Yuan, S.; Niu, T.; Zhao, K.; Liu, Z.; Liu, S. F. Adv. Funct. Mater. 2018, 28, 1803269. doi: 10.1002/adfm.201803269  doi: 10.1002/adfm.201803269

    41. [41]

      Said, A. A.; Xie, J.; Zhang, Q. C. Small 2019, 15. doi: 10.1002/smll.201900854  doi: 10.1002/smll.201900854

    42. [42]

      Becker, M.; Wark, M. Cryst. Growth Des. 2018, 18, 4790. doi: 10.1021/acs.cgd.8b00686  doi: 10.1021/acs.cgd.8b00686

    43. [43]

      Wang, Y. Q.; Li, L.; Nie, L. H.; Li, N. N.; Shi, C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724.  doi: 10.3866/PKU.WHXB201607272

    44. [44]

      Soe, C. M. M.; Nie, W. Y.; Stoumpos, C. C.; Tsai, H.; Blancon, J. C.; Liu, F. Z.; Even, J.; Marks, T. J.; Mohite, A. D.; Kanatzidis, M. G. Adv. Energy Mater. 2018, 8, 1700979.1. doi: 10.1002/aenm.201700979  doi: 10.1002/aenm.201700979

    45. [45]

      Alsari, M.; Bikondoa, O.; Bishop, J.; Abdi-Jalebi, M.; Ozer, L. Y.; Hampton, M.; Thompson, P.; Horantner, M. T.; Mahesh, S.; Greenland, C.; et al. Energy Environ. Sci. 2018, 11, 383. doi: 10.1039/c7ee03013d  doi: 10.1039/c7ee03013d

  • 加载中
    1. [1]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    2. [2]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    3. [3]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    4. [4]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    5. [5]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    6. [6]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    7. [7]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    8. [8]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    9. [9]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    10. [10]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    11. [11]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    12. [12]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    13. [13]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    14. [14]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    15. [15]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    16. [16]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    17. [17]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    18. [18]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    19. [19]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    20. [20]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

Metrics
  • PDF Downloads(11)
  • Abstract views(340)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return