Citation: Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200300. doi: 10.3866/PKU.WHXB202003004 shu

Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions

  • Corresponding author: Min Zhou, zhoumin@bit.edu.cn Yanxia Xing, xingyanxia@bit.edu.cn
  • Received Date: 2 March 2020
    Revised Date: 30 April 2020
    Accepted Date: 5 May 2020
    Available Online: 15 May 2020

    Fund Project: the National Natural Science Foundation of China 11674024

  • The molecular magnetic tunnel junction (MMTJ) with high tunnel magnetoresistance (TMR) is an important component for devices such as computers and electronic storage. With the rapid development of the modern electronics industry, the decrease of device size and the increase of area density, it is important to improve TMR technology. In addition, the computing process faces huge challenges. As the size of electronic devices decreases, small changes may cause completely different transmission characteristics, therefore the minute details of the device must be carefully controlled. In this paper, in order to find large TMR values and explore the role of symmetry on spin-polarized transport properties, γ-graphyne nanodots (γ-GYND) coupled between ferromagnetic (FM) metallic zigzag graphene nanoribbon (ZGNR) electrodes were used. Depending on the widths of the ZGNR and two types of contact positions between the ZGNR and γ-graphyne nanodots (γ-GYND), eight ZGNR/γ-GYND/ZGNR MMTJs with different symmetries were constructed. By using Keldysh non-equilibrium Green's function (NEGF) and density functional theory (DFT), the I-V curve, the spin-injection efficiency (SIE) and TMR of MMTJs were calculated. We found that the transport properties of these MMTJs differed substantially. For absolute symmetric MMTJs, due to the wave functions corresponding to the band structure near the Fermi energy having different parity, the electron transport between the wave functions with different parity is prohibited, so we can see that the spin-down current is always zero. This implies that these absolutely symmetrical structures have 100% spin injection efficiency over a wide range of bias voltages. In addition, the calculation results also show that these absolutely symmetric structures also have large TMR at low bias, up to 3.7 × 105, indicating that these devices have a large magnetoresistance effect and high magnetic field sensitivity, which can be used in the read head of computer hard disks, MRAM, and various magnetic sensors. However, for these asymmetric MMTJs, since there is no limitation of the wave function parity of the left and right electrodes, the spin-up current and spin-down current fluctuated as the bias voltage increased, so perfect SIE does not appear. In addition, the calculation results showed that the TMR of asymmetric MMTJs were four orders of magnitude smaller than with symmetric MMTJs. Thus the symmetry of MMTJs has a great influence on the spin-polarized transport properties of the device. These absolutely symmetrical MMTJs have spin-polarized transport properties that are far superior to other MMTJs. This is conducive to the manufacture of spin filters, rectifiers, and various magnetic sensors. Finally, these excellent characteristics can be explained by the transmission coefficient, local density of states (LDOS) and band structure.
  • 加载中
    1. [1]

      Wolf, S. A.; Treger, D.; Chtchelkanova, A. MRS Bull. 2011, 31, 400. doi: 10.1557/mrs2006.101  doi: 10.1557/mrs2006.101

    2. [2]

      Seneor, P.; Dlubak, B.; Martin, M. B.; Anane, A.; Jaffres, H.; Fert, A. MRS Bull. 2012, 37, 1245. doi: 10.1557/mrs.2012.277  doi: 10.1557/mrs.2012.277

    3. [3]

      Chambers, S. A.; Yoo, Y. K. MRS Bull. 2011, 28, 706. doi: 10.1557/mrs2003.210  doi: 10.1557/mrs2003.210

    4. [4]

      Lyu, J. K.; Zhang, S. F.; Zhang, C. W.; Wang, P. J. Ann. Physik. 2019, 531, 1900017. doi: 10.1002/andp.201900017  doi: 10.1002/andp.201900017

    5. [5]

      Chen, M.; Yu, Z.; Wang, Y.; Xie, Y.; Wang, J.; Guo, H. Phys. Chem. Chem. Phys. 2016, 18, 1601. doi: 10.1039/C5CP04652A  doi: 10.1039/C5CP04652A

    6. [6]

      Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 736.  doi: 10.3866/PKU.WHXB20110320

    7. [7]

      Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073.  doi: 10.3866/PKU.WHXB20100812

    8. [8]

      Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2007, 99, 186801. doi: 10.1103/physrevlett.99.186801  doi: 10.1103/physrevlett.99.186801

    9. [9]

      Owens, F. J. J. Chem. Phys. 2008, 128, 194701. doi: 10.1063/1.2905215  doi: 10.1063/1.2905215

    10. [10]

      Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. J. Phys. Soc. Jpn. 1996, 65, 1920. doi: 10.1143/JPSJ.65.1920  doi: 10.1143/JPSJ.65.1920

    11. [11]

      Kobayashi, Y.; Fukui, K. I.; Enoki, T.; Kusakabe, K. Phys. Rev. B 2006, 73, 125415. doi: 10.1103/PhysRevB.73.125415  doi: 10.1103/PhysRevB.73.125415

    12. [12]

      Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. B 1996, 54, 17954. doi: 10.1103/physrevb.54.17954  doi: 10.1103/physrevb.54.17954

    13. [13]

      Pisani, L.; Chan, J. A.; Montanari, B.; Harrison, N. M. Phys. Rev. B 2007, 75, 064418. doi: 10.1103/PhysRevB.75.064418  doi: 10.1103/PhysRevB.75.064418

    14. [14]

      Wakabayashi, K.; Fujita, M.; Ajiki, H.; Sigrist, M. Carbon Based Magnet. 2006, 59, 279. doi: 10.1103/PhysRevB.59.8271  doi: 10.1103/PhysRevB.59.8271

    15. [15]

      Yazyev, O. V.; Katsnelson, M. I. Phys. Rev. Lett. 2008, 100, 047209. doi: 10.1103/PhysRevLett.100.047209  doi: 10.1103/PhysRevLett.100.047209

    16. [16]

      Qiao, Z.; Yang, S. A.; Wang, B.; Yao, Y.; Niu, Q. Phys. Rev. B 2011, 84, 035431. doi: 10.1103/PhysRevB.84.035431  doi: 10.1103/PhysRevB.84.035431

    17. [17]

      Li, Z.; Qian, H.; Wu, J.; Gu, B. L.; Duan, W. Phys. Rev. Lett. 2008, 100, 206802. doi: 10.1103/physrevlett.100.206802  doi: 10.1103/physrevlett.100.206802

    18. [18]

      Li, Y. J.; Li, Y. L. Acta Phys. -Chim. Sin. 2018, 34, 992.  doi: 10.3866/PKU.WHXB201801302

    19. [19]

      Xu, N.; Kong, F. J.; Wang, Y. Z. Acta Phys. -Chim. Sin. 2011, 27, 559.  doi: 10.3866/PKU.WHXB20110305

    20. [20]

      Spitler, E. L.; Ii, C. A.; Haley, M. M. Chem. Rev. 2006, 106, 5344. doi: 10.1002/chin.200718260  doi: 10.1002/chin.200718260

    21. [21]

      Kehoe, J. M.; Kiley, J. H.; English, J. J.; Johnson, C. A.; Petersen, R. C.; Haley, M. M. Org. Lett. 2000, 2, 969. doi: 10.1002/chin.200027097  doi: 10.1002/chin.200027097

    22. [22]

      Zhou, J.; Lv, K.; Wang, Q.; Chen, X. S.; Sun, Q.; Jena, P. J. Chem. Phys. 2011, 134, 174701. doi: 10.1063/1.3583476  doi: 10.1063/1.3583476

    23. [23]

      Huang, C. S.; Li, Y. L. Acta. Phys. -Chim. Sin. 2016, 32, 1314.  doi: 10.3866/PKU.WHXB201605035

    24. [24]

      Xi, J. Y.; Nakamura, Y. M.; Zhao, T. Q.; Wang, D.; Shuai, Z. G. Acta. Phys. -Chim. Sin. 2018, 34, 961.  doi: 10.3866/PKU.WHXB201802051

    25. [25]

      Wu, W.; Guo, W.; Zeng, X. C. Nanoscale 2013, 5, 9264. doi: 10.1039/c3nr03167e  doi: 10.1039/c3nr03167e

    26. [26]

      Shao, Z. G.; Sun, Z. L. Phys. E. 2015, 74, 438. doi: 10.1016/j.physe.2015.07.011  doi: 10.1016/j.physe.2015.07.011

    27. [27]

      Kim, G. B.; Choi; Joon, H. Phys. Rev. B 2012, 79, 86. doi: 10.1103/PhysRevB.86.115435  doi: 10.1103/PhysRevB.86.115435

    28. [28]

      Ni, Y.; Yao, K. L.; Fu, H. H.; Gao, G. Y.; Zhu, S. C.; Luo, B.; Wang, S. L.; Li, R. X. Nanoscale 2013, 5, 4468. doi: 10.1039/C3NR00731F  doi: 10.1039/C3NR00731F

    29. [29]

      Lu, J.; Guo, Y.; Zhang, Y.; Cao, J. Int. J. Hydrogen Energy 2014, 39, 17112. doi: 10.1016/j.ijhydene.2014.08.066  doi: 10.1016/j.ijhydene.2014.08.066

    30. [30]

      Yue, Q.; Chang, S.; Tan, J.; Qin, S.; Kang, J.; Li, J. Phys. Rev. B 2012, 86, 235448. doi: 10.1103/physrevb.86.235448  doi: 10.1103/physrevb.86.235448

    31. [31]

      Zhai, M. X.; Wang, X. F.; Vasilopoulos, P.; Liu, Y. S.; Dong, Y. J.; Zhou, L.; Jiang, Y. J.; You, W. L. Nanoscale 2014, 6, 11121. doi: 10.1039/c4nr02426e  doi: 10.1039/c4nr02426e

    32. [32]

      Ding, H.; Bai, H.; Huang, Y. AIP Adv. 2015, 5, 077153. doi: 10.1063/1.4927497  doi: 10.1063/1.4927497

    33. [33]

      León, A.; Pacheco, M. Chem. Phys. Lett. 2015, 620, 67. doi: 10.1016/j.cplett.2014.12.038  doi: 10.1016/j.cplett.2014.12.038

    34. [34]

      Saraiva-Souza, A.; Smeu, M.; Zhang, L.; Ratner, M. A.; Guo, H. J. Phys. Chem. C 2016, 120, 4605. doi: 10.1021/acs.jpcc.5b11235  doi: 10.1021/acs.jpcc.5b11235

    35. [35]

      Wang, B.; Li, J.; Yu, Y.; Wei, Y.; Wang, J.; Guo, H. Nanoscale 2016, 8, 3432. doi: 10.1039/C5NR06585B  doi: 10.1039/C5NR06585B

    36. [36]

      Waldron, D.; Haney, P.; Larade, B.; MacDonald, A.; Guo, H. Phys. Rev. Lett. 2006, 96, 166804. doi: 10.1103/PhysRevLett.96.166804  doi: 10.1103/PhysRevLett.96.166804

    37. [37]

      Waldron, D.; Timoshevskii, V.; Hu, Y.; Xia, K.; Guo, H. Phys. Rev. Lett. 2006, 97, 226802. doi: 10.1103/PhysRevLett.97.226802  doi: 10.1103/PhysRevLett.97.226802

    38. [38]

      Taylor, J.; Guo, H.; Wang, J. Phys. Rev. B 2001, 63, 245407. doi: 10.1103/PhysRevB.63.245407  doi: 10.1103/PhysRevB.63.245407

    39. [39]

      Taylor, J.; Guo, H.; Wang, J. Phys. Rev. B 2001, 63, 121104. doi: 10.1103/PhysRevB.63.121104  doi: 10.1103/PhysRevB.63.121104

    40. [40]

      Ordejón; Pablo and Artacho; Emilio and Soler; M. A. J. Phys. Rev. B: Condens. Matter 1996, 53, R10441. doi: 10.1103/PhysRevB.53.r10441  doi: 10.1103/PhysRevB.53.r10441

    41. [41]

      Artacho, E.; Anglada, E.; Diéguez, O.; Gale; J.; García, A.; Junquera, J.; Martin, R. M.; Ordejón, P.; Pruneda, J. M.; Sánchez-Portal, D. J.; et al. Phys. Condes. Matter 2008, 20, 064208. doi: 10.1088/0953-8984/20/6/064208  doi: 10.1088/0953-8984/20/6/064208

    42. [42]

      Perdew, J. P.; Zunger, A. Phys. Rev. B: Condes. Matter 1981, 23, 5048. doi: 10.1103/PhysRevB.23.5048  doi: 10.1103/PhysRevB.23.5048

    43. [43]

      Velev, J. P.; Belashchenko, K. D.; Jaswal, S. S.; Tsymbal, E. Y. Appl. Phys. Lett. 2007, 90, 72502. doi: 10.1063/1.2643027  doi: 10.1063/1.2643027

    44. [44]

      Troullier, N.; Martins, J. L. Phys. Rev. B: Condes. Matter 1991, 43, 1993. doi: 10.1103/PhysRevB.43.1993  doi: 10.1103/PhysRevB.43.1993

  • 加载中
    1. [1]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    2. [2]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    3. [3]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    4. [4]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    5. [5]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    11. [11]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    12. [12]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    13. [13]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    14. [14]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    15. [15]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    16. [16]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    17. [17]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    18. [18]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    19. [19]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(6)
  • Abstract views(197)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return