Citation: Ye Fan, Chongmei Cao, Yun Fang, Yongmei Xia. Fabrication of Fluorescent Nanodots by Self-Crosslinking Ufasomes of Conjugated Linoleic Acid and Their Unique Fluorescence Properties[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200203. doi: 10.3866/PKU.WHXB202002032 shu

Fabrication of Fluorescent Nanodots by Self-Crosslinking Ufasomes of Conjugated Linoleic Acid and Their Unique Fluorescence Properties

  • Corresponding author: Yun Fang, yunfang@126.com
  • Received Date: 24 February 2020
    Revised Date: 7 April 2020
    Accepted Date: 9 April 2020
    Available Online: 20 April 2020

    Fund Project: the National Key Research and Development Program of China 2017YFB0308705

  • Carbon dots (CDs), as a kind of carbon-based fluorescent nanodots (FNDs), not only retain the advantageous characteristics of carbon-based materials (e.g., low toxicity and biocompatibility) but also exhibit tunable fluorescence emission, low photobleaching, and undergo facile surface functionalization. Therefore, the prospect of applying these materials for analysis and detection, cell imaging, drug delivery, light-emitting devices, photocatalysis, biosensing, and cancer treatment is promising. Although the synthesis of carbon dots from green and renewable feedstocks as biomass carbon sources is possible, the controllability of the involved chemical reactions is poor, resulting in poor atom economy, low quantum yields, and, especially, extremely low yields of carbon dots. In addition, these disadvantages could lead to an increase in equipment requirements and could pose a safety risk because of the need for hydrothermal and solvothermal synthesis. Certain methods even require large amounts of acid/alkali, strong oxidants, or organic solvents, thereby complicating the post-processing process and generating waste and emissions. This research aimed to implement a new idea, namely to "fabricate" rather than "synthesize" carbon-based FNDs from a certain kind of natural and small unsaturated molecule with surface activity relying on a self-assembling and self-crosslinking strategy in lieu of traditional approaches that involve uncontrollable reactions with unknown mechanisms including pyrolysis, dehydrolysis, polyconcensation, and carbonization. In this context, conjugated linoleic acid (CLA) has been studied extensively in our laboratory, and was found to have the self-assembly and self-crosslink characteristics required by the above innovative strategy. This motivated us to adopt CLA as a new carbon source in this study. First, CLA self-assembles into unsaturated fatty acid liposomes (ufasomes) in an aqueous solution of pH 8.6 at ambient temperature (15-25 ℃), and then, the initiator Ammonium persulfate is added to induce self-crosslinking of the ufasomes at 80 ℃ to obtain firm and uniform nanoparticles. On this basis, the possibility of using them as FNDs is investigated. Consequently, FNDs based on self-crosslinked ufasomes (SCU-FNDs) are prepared in high FND yield of 73.9% after dialysis, with a consistent particle size (17 nm), a degree of self-crosslink (DSC) of 75%, and emission of bluish green fluorescence excited at 320 nm. Furthermore the "fabrication" route provided a clear solution of FNDs that could be applied directly without separation and purification and with no wasteful emissions, which is therefore beneficial for large-scale preparation. The experimental results showed that the fluorescence intensities of the SCU-FNDs are positively correlated with both the surface carboxyl groups and DSC results. A reasonable explanation for the former relationship is the effect of the restricted geometry of the ufasomes on the accumulation of oxygen atoms at the surface of FNDs, whereas the latter could be explained by the confinement effect of the covalent crosslink on the motion of the hydrocarbon chain of the CLA molecules. The experimental results also showed that the SCU-FNDs have temperature-sensitive fluorescence properties, which is attributed to the motion of the residual hydrocarbon chain inside the SCU-FNDs even though they have been locally polymerized. The change in the fluorescence intensity of the FNDs as a function of the temperature was good in accordance with the linear relationship I/I0 = -0.00922T + 1.229 (R2 = 0.99) in the range of 25-85 ℃, which demonstrates the potential for preparing green and safe undoped FNDs for use as biocompatible and temperature-sensitive fluorescent probes.
  • 加载中
    1. [1]

      Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126, 12736. doi: 10.1021/ja040082h  doi: 10.1021/ja040082h

    2. [2]

      Zhang, J.; Yu, S. H. Mater. Today 2016, 19 (7), 382. doi: 10.1016/j.mattod.2015.11.008  doi: 10.1016/j.mattod.2015.11.008

    3. [3]

      Hu, C.; Mu, Y.; Li, M. Y.; Qiu, J. S. Acta Phys. -Chim. Sin. 2019, 35 (6), 572.  doi: 10.3866/PKU.WHXB201806060

    4. [4]

      Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; et al. J. Am. Chem. Soc. 2006, 128, 7756. doi: 10.1021/ja062677d  doi: 10.1021/ja062677d

    5. [5]

      Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Dalton Trans. 2012, 41 (31), 9526. doi: 10.1039/C2DT30985H  doi: 10.1039/C2DT30985H

    6. [6]

      Xu, H.; Zhou, S.; Xiao, L.; Li, S.; Song, T.; Wang, Y.; Yuan, Q. Carbon 2015, 87, 215. doi: 10.1016/j.carbon.2015.02.036  doi: 10.1016/j.carbon.2015.02.036

    7. [7]

      Chen, B.; Li, F.; Li, S.; Weng, W.; Guo, H.; Guo, T.; Zhang, X.; Chen, Y.; Huang, T.; Hong, X.; et al. Nanoscale 2013, 5 (5), 1967. doi: 10.1039/c2nr32675b  doi: 10.1039/c2nr32675b

    8. [8]

      Pan, L.; Sun, S.; Zhang, A.; Jiang, K.; Zhang, L.; Dong, C.; Huang, Q.; Wu, A.; Lin, H. Adv. Mater. 2015, 27 (47), 7782. doi: 10.1002/adma.201503821  doi: 10.1002/adma.201503821

    9. [9]

      Chen, Q. L.; Wang, C. F.; Chen, S. J. Mater. Sci. 2013, 48 (6), 2352. doi: 10.1007/s10853-012-7016-8  doi: 10.1007/s10853-012-7016-8

    10. [10]

      Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X.; et al. Angew. Chem. Int. Ed. 2017, 56, 6187. doi: 10.1002/ange.201700757  doi: 10.1002/ange.201700757

    11. [11]

      Geng, B.; Yang, D.; Pan, D.; Wang, L.; Zheng, F.; Shen, W.; Zhang, C.; Li, X. Carbon 2018, 134, 153. doi: 10.1016/j.carbon.2018.03.084  doi: 10.1016/j.carbon.2018.03.084

    12. [12]

      Huang, Y. J.; Lian, C.; Zhou, J. Y.; Huang, Z. C.; Kang, X. H.; Huang, Z. Y.; Li, X. J.; Chen, L.; Guang, Y. Acta Phys. -Chim. Sin. 2019, 35 (11), 1267.  doi: 10.3866/PKU.WHXB201812053

    13. [13]

      Mehta, V. N.; Jha, S.; Basu, H.; Singhal, R. K.; Kailasa, S. K. Sensor Actuat. B-Chem. 2015, 213, 434. doi: 10.1016/j.snb.2015.02.104  doi: 10.1016/j.snb.2015.02.104

    14. [14]

      Song, P.; Zhang, L. S.; Long, H.; Meng, M.; Liu, T.; Yin, Y. M.; Xi, R. M. RSC Adv. 2017, 7 (46), 28637. doi: 10.1039/c7ra04122e  doi: 10.1039/c7ra04122e

    15. [15]

      Shao, J.; Zhu, S.; Liu, H.; Song, Y.; Tao, S.; Yang, B. Adv. Sci. 2017, 4 (12), 1700395. doi: 10.1002/advs.201700395  doi: 10.1002/advs.201700395

    16. [16]

      Tao, S. Y.; Song, Y. B.; Zhu, S. J.; Shao, J. R.; Yang, B. Polymer 2017, 116, 472. doi: 10.1016/j.polymer.2017.02.039  doi: 10.1016/j.polymer.2017.02.039

    17. [17]

      Zhang, X.; Jiang, M.; Niu, N.; Chen, Z.; Li, S.; Liu, S.; Li, J. ChemSusChem 2018, 11 (1), 11. doi: 10.1002/cssc.201701847  doi: 10.1002/cssc.201701847

    18. [18]

      Huang, Q.; Lin, X.; Zhu, J. J.; Tong, Q.X. Biosens. Bioelectron. 2017, 94, 507. doi: 10.1016/j.bios.2017.03.048  doi: 10.1016/j.bios.2017.03.048

    19. [19]

      Fan, Y.; Fang, Y.; Chen, H. T.; Gao, D. Chem. J. Chin. Univ. 2014, 35 (9), 1933.  doi: 10.7503/cjcu20140341

    20. [20]

      Gao, D.; Fan, Y.; Fang, Y.; Li, Z. Y. Fine Chem. 2016, 33 (5), 509.  doi: 10.13550/j.jxhg.2016.05.005

    21. [21]

      Fan, Y.; Fang, Y.; Ma, L. Colloid Surfaces B 2014, 123, 8. doi: 10.1016/j.colsurfb.2014.08.028  doi: 10.1016/j.colsurfb.2014.08.028

    22. [22]

      Fan, Y.; Fang, Y. Ma, L.; Jiang, H. J. Surfact. Deterg. 2015, 18, 179. doi: 10.1007/s11743-014-1591-4  doi: 10.1007/s11743-014-1591-4

    23. [23]

      Fan, Y.; Ma, J.; Fang, Y.; Liu, T. T.; Hu, X. Y.; Xia, Y. M. Colloid Surfaces B 2018, 167, 385. doi: 10.1016/j.colsurfb.2018.04.035  doi: 10.1016/j.colsurfb.2018.04.035

    24. [24]

      Ma, J.; Fan, Y.; Fang, Y. Acta Phys. -Chim. Sin. 2015, 31 (7), 1359.  doi: 10.3866/PKU.WHXB201504131

    25. [25]

      Hou, J. Rapid Fabrication of Carbon Dots and Carbon Dots-Based Composites and Their Applications in Fluorescent Analysis. Ph. D. Dissertation, Jilin University, Changchun, 2017.

    26. [26]

      Khanam, A.; Tripathi, S. K.; Roy, D.; Nasim, M. Colloid Surfaces B 2013, 102, 63. doi: 10.1016/j.colsurfb.2012.08.016  doi: 10.1016/j.colsurfb.2012.08.016

    27. [27]

      Chaiendoo, K.; Ittisanronnachai, S.; Promarak, V.; Ngeontae, W. Carbon 2019, 146, 728. doi: 10.1016/j.carbon.2019.02.030  doi: 10.1016/j.carbon.2019.02.030

    28. [28]

      Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B. P.; Pang, D. W. Adv. Mater. 2011, 23 (48), 5801. doi: 10.1002/adma.201102866  doi: 10.1002/adma.201102866

    29. [29]

      Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. ACS Nano 2016, 10 (1), 484. doi: 10.1021/acsnano.5b05406  doi: 10.1021/acsnano.5b05406

    30. [30]

      Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361. doi: 10.1039/c1cs15113d  doi: 10.1039/c1cs15113d

    31. [31]

      Zhao, E.; Lam, J W Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X.; Hao, J.; Tang, B. Z. Macromolecules 2014, 48 (1), 64. doi: 10.1021/ma502160w  doi: 10.1021/ma502160w

    32. [32]

      Song, G.; Lin, Y.; Zhu, Z.; Zheng, H.; Qiao, J.; He, C.; Wang, H. Macromol. Rapid Commun. 2015, 36, 278. doi: 10.1002/marc.201400516  doi: 10.1002/marc.201400516

    33. [33]

      Zhu, S.; Zhang, J.; Wang, L.; Song, Y.; Zhang, G.; Wang, H.; Yang, B. Chem. Commun. 2012, 48 (88), 10889. doi: 10.1039/c2cc36080b  doi: 10.1039/c2cc36080b

    34. [34]

      Zhu, S.; Wang, L.; Zhou, N.; Zhao, X.; Song, Y.; Maharjan, S.; Zhang, J.; Lu, L.; Wang, H.; Yang, B. Chem. Commun. 2014, 50 (89), 13845. doi: 10.1039/c4cc05806b  doi: 10.1039/c4cc05806b

    35. [35]

      Qiao, Z. A.; Wang, Y. F.; Gao, Y.; Li, H. W.; Dai, T. Y.; Liu, Y. L.; Huo, Q. S. Chem. Commun. 2010, 46 (46), 8812. doi: 10.1039/c0cc02724c  doi: 10.1039/c0cc02724c

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    12. [12]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    13. [13]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    14. [14]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    15. [15]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

Metrics
  • PDF Downloads(11)
  • Abstract views(457)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return