Citation: Miaomiao Liu, Wenjuan Wang, Xiuping Hao, Xiaoyan Dong. Seeding and Cross-Seeding Aggregations of Aβ40 and hIAPP in Solution and on Surface[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200202. doi: 10.3866/PKU.WHXB202002024 shu

Seeding and Cross-Seeding Aggregations of Aβ40 and hIAPP in Solution and on Surface

  • Corresponding author: Xiaoyan Dong, d_xy@tju.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 20 February 2020
    Revised Date: 6 April 2020
    Accepted Date: 9 April 2020
    Available Online: 20 April 2020

    Fund Project: the National Natural Science Foundation of China 21978207

  • Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), common incurable diseases caused by protein misfolding, have shown extensive correlation with each other via cross-aggregation between their related pathogenic peptide, amyloid β protein (Aβ) and human islet amyloid polypeptide (hIAPP), respectively. However, little is known about how these two peptides affect the cross-amyloid aggregation process in vivo. To better simulate the intracorporal environment, where different forms of amyloid aggregates co-exist and very few aggregates probably attach to the vessel wall as seeds, herein, we study the seeded-aggregation of Aβ and hIAPP in the presence of homogeneous or heterogeneous seeds, both in solution and on the solid surface, with different monomer and seed concentrations. In this study, Thioflavin T (ThT) fluorescence assay, atomic force microscopy (AFM), and far-UV circular dichroism (CD) were performed to investigate the aggregation process in solution. Moreover, the binding of monomers with seeds on solid surface was detected by quartz crystal microbalance with dissipation (QCM-D). The 3-(4, 5-dime-thylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays with human neuroblastoma cells (SH-SY5Y) were finally used to test the cytotoxicity caused by the aggregates. Series of analyses confirmed that a small amount of Aβ40 or hIAPP seeds (1/50 of the monomers in solution) significantly changed the aggregation pathway, forming heterogeneous aggregates with different morphologies and increased β-sheet structures. MTT result showed that the heterogeneous aggregates obtained with Aβ40 and hIAPP seeding reduced the cell viability to 70.5% and 74.4%, respectively, both causing higher cytotoxicity than homogeneous aggregates (82.9% and 76.5%, respectively). The results in solution and on the solid surface both prove that Aβ40 and hIAPP seeds can not only induce rapid aggregation of their homogeneous monomers but also promote the heterogeneous monomers to aggregate, but monomer-heterogeneous seed binding efficiency is lower than that between homogeneous species. The differences in seeding and cross-seeding ability of Aβ40 and hIAPP indicate the barriers depended on the sequence similarity and structural compatibility between different amyloid aggregates. In the case of heterogeneous aggregation, aggregation features largely depend on the seeds. Furthermore, hIAPP seeds exhibited higher cross-seeding efficiency than Aβ40 seeds on the solid surface, which is different from the result in solution where Aβ40 seeds indicating the influence of interfacial properties on aggregation process. This finding would give a deep understanding of the cross-seeding aggregation process and we hope that this work will stimulate more research to explore all possible fundamental and practical aspects of amyloid cross-seeding.
  • 加载中
    1. [1]

      Westermark, G. T.; Fändrich, M.; Lundmark, K.; Westermark, P. Csh. Perspect. Med. 2018, 8 (1), a024323. doi: 10.1101/cshperspect.a024323  doi: 10.1101/cshperspect.a024323

    2. [2]

      Ren, B.; Zhang, Y.; Zhang, M.; Liu, Y.; Zhang, D.; Gong, X.; Feng, Z.; Tang, J.; Chang, Y.; Zheng, J. J. Mater. Chem. B 2019, 7 (46), 7267. doi: 10.1039/c9tb01871a  doi: 10.1039/c9tb01871a

    3. [3]

      Lim, K. H. Front. Mol. Neurosci. 2019, 12, 158. doi: 10.3389/fnmol.2019.00158  doi: 10.3389/fnmol.2019.00158

    4. [4]

      Hardy, J.; Selkoe, D. J. Science 2002, 297 (5580), 353. doi: 10.1126/science.1072994  doi: 10.1126/science.1072994

    5. [5]

      Ono, K.; Takahashi, R.; Ikeda, T.; Yamada, M. J. Neurochem. 2012, 122 (5), 883. doi: 10.1111/j.1471-4159.2012.07847.x  doi: 10.1111/j.1471-4159.2012.07847.x

    6. [6]

      Palotay, J. L.; Howard, C. F. Vet. Pathol. 1982, 19 (Suppl. 7), 181. doi: 10.1177/030098588201907s14  doi: 10.1177/030098588201907s14

    7. [7]

      Despa, F.; Goldstein, L. B.; Biessels, G. J. Ann. Neurol. 2019, 87 (3), 486. doi: 10.1002/ana.25668  doi: 10.1002/ana.25668

    8. [8]

      Baram, M.; Atsmon-Raz, Y.; Ma, B.; Nussinov, R.; Miller, Y. Phys. Chem. Chem. Phys. 2016, 18 (4), 2330. doi: 10.1039/c5cp03338a  doi: 10.1039/c5cp03338a

    9. [9]

      Zhu, H.; Tao, Q.; Ang, T. F. A.; Massaro, J.; Gan, Q.; Salim, S.; Zhu, R. -Y.; Kolachalama, V. B.; Zhang, X.; Devine, S.; et al. JAMA Netw. Open 2019, 2 (8), e199826. doi: 10.1001/jamanetworkopen.2019.9826  doi: 10.1001/jamanetworkopen.2019.9826

    10. [10]

      Biessels, G. J.; Strachan, M. W. J.; Visseren, F. L. J.; Kappelle, L. J.; Whitmer, R. A. Lancet Diabetes Endo. 2014, 2 (3), 246. doi: 10.1016/S2213-8587(13)70088-3  doi: 10.1016/S2213-8587(13)70088-3

    11. [11]

      Verdile, G.; Keane, K. N.; Cruzat, V. F.; Medic, S.; Sabale, M.; Rowles, J.; Wijesekara, N.; Martins, R. N.; Fraser, P. E.; Newsholme, P. Mediat. Inflamm. 2015, 2015, 105828. doi: 10.1155/2015/105828  doi: 10.1155/2015/105828

    12. [12]

      Schultz, N.; Byman, E.; Wennström, M. Neurobiol. Aging 2018, 69, 94. doi: 10.1016/j.neurobiolaging.2018.05.003  doi: 10.1016/j.neurobiolaging.2018.05.003

    13. [13]

      Eisenberg, D.; Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Sambashivan, S.; Ivanova, M. I.; Madsen, A. O.; Riekel, C. Acc. Chem. Res. 2006, 39 (9), 568. doi: 10.1021/ar0500618  doi: 10.1021/ar0500618

    14. [14]

      Roostaei, T.; Nazeri, A.; Felsky, D.; De Jager, P. L.; Schneider, J. A.; Pollock, B. G.; Bennett, D. A. Voineskos, A. N. Mol. Psychiatr. 2017, 22 (2), 287. doi: 10.1038/mp.2016.35  doi: 10.1038/mp.2016.35

    15. [15]

      Jackson, K.; Barisone, G. A.; Diaz, E.; Jin, L. W.; DeCarli, C.; Despa, F. Ann. Neurol. 2013, 74 (4), 517. doi: 10.1002/ana.23956  doi: 10.1002/ana.23956

    16. [16]

      Soto, C.; Pritzkow, S. Nat. Neurosci. 2018, 21 (10), 1332. doi: 10.1038/s41593-018-0235-9  doi: 10.1038/s41593-018-0235-9

    17. [17]

      Armiento, V.; Spanopoulou, A.; Kapurniotu, A. Angew. Chem. Int. Edit. 2020, 59 (9), 3372. doi: 10.1002/anie.201906908  doi: 10.1002/anie.201906908

    18. [18]

      Jucker, M.; Walker, L. C. Ann. Neurol. 2011, 70 (4), 532. doi: 10.1002/ana.22615  doi: 10.1002/ana.22615

    19. [19]

      Kiriyama, Y.; Nochi, H. Cells 2018, 7 (8), 95. doi: 10.3390/cells7080095  doi: 10.3390/cells7080095

    20. [20]

      O'Nuallain, B.; Williams, A. D.; Westermark, P.; Wetzel, R. J. Biol. Chem. 2004, 279 (17), 17490. doi: 10.1074/jbc.M311300200  doi: 10.1074/jbc.M311300200

    21. [21]

      Mulder, H.; Leckstrom, A.; Uddman, R.; Ekblad, E.; Westermark, P.; Sundler, F. J. Neurosci. 1995, 15 (11), 7625.  doi: 10.1523/JNEUROSCI.15-11-07625.1995

    22. [22]

      Fawver, J. N.; Ghiwot, Y.; Koola, C.; Carrera, W.; Rodriguez-Rivera, J.; Hernandez, C.; Dineley, K. T.; Kong, Y.; Li, J. R.; Jhamandas, J.; et al. Curr. Alzheimer Res. 2014, 11 (10), 928. doi: 10.2174/1567205011666141107124538  doi: 10.2174/1567205011666141107124538

    23. [23]

      Banks, W. A.; Kastin, A. J. Peptides 1998, 19 (5), 883. doi: 10.1016/S0196-9781 (98)00018-7  doi: 10.1016/S0196-9781(98)00018-7

    24. [24]

      Hu, R. D.; Zhang, M. Z.; Chen, H.; Jiang, B. B.; Zheng, J. ACS Chem. Neurosci. 2015, 6 (10), 1759. doi: 10.1021/acschemneuro.5b00192  doi: 10.1021/acschemneuro.5b00192

    25. [25]

      Yan, L. -M.; Velkova, A.; Tatarek-Nossol, M.; Andreetto, E.; Kapurniotu, A. Angew. Chem. Int. Edit. 2007, 46 (8), 1246. doi: 10.1002/anie.200604056  doi: 10.1002/anie.200604056

    26. [26]

      Moreno-Gonzalez, I.; Edwards, G.; Salvadores, N.; Shahnawaz, M.; Diaz-Espinoza, R.; Soto, C. Mol. Psychiatr. 2017, 22 (9), 1327. doi: 10.1038/mp.2016.230  doi: 10.1038/mp.2016.230

    27. [27]

      Kakinen, A.; Sun, Y. X.; Javed, I.; Faridi, A.; Pilkington, E. H.; Faridi, P.; Purcell, A. W.; Zhou, R. H.; Ding, F.; Lin, S. J.; et al. Sci. Bull. 2019, 64 (1), 26. doi: 10.1016/j.scib.2018.11.012  doi: 10.1016/j.scib.2018.11.012

    28. [28]

      Seeliger, J.; Weise, K.; Opitz, N.; Winter, R. J. Mol. Biol. 2012, 421 (2-3), 348. doi: 10.1016/j.jmb.2012.01.048  doi: 10.1016/j.jmb.2012.01.048

    29. [29]

      Hao, X. P.; Zheng, J.; Sun, Y.; Dong, X. Y. Langmuir 2019, 35 (7), 2821. doi: 10.1021/acs.langmuir.8b03599  doi: 10.1021/acs.langmuir.8b03599

    30. [30]

      Naiki, H.; Nakakuki, K. Lab. Invest. 1996, 74 (2), 374.

    31. [31]

      Nielsen, L.; Khurana, R.; Coats, A.; Frokjaer, S.; Brange, J.; Vyas, S.; Uversky, V. N.; Fink, A. L. Biochemistry 2001, 40 (20), 6036. doi: 10.1021/bi002555c  doi: 10.1021/bi002555c

    32. [32]

      Syed, S. B.; Khan, F. I.; Khan, S. H.; Srivastava, S.; Hasan, G. M.; Lobb, K. A.; Islam, A.; Hassan, M. I.; Ahmad, F. Int. J. Biol. Macromol. 2018, 117, 1252. doi: 10.1016/j.ijbiomac.2018.06.025  doi: 10.1016/j.ijbiomac.2018.06.025

    33. [33]

      Wang, C. G.; Xu, L.; Cheng, F.; Wang, H. Q.; Jia, L. Y. RSC Adv. 2015, 5 (38), 30197. doi: 10.1039/c5ra02314a  doi: 10.1039/c5ra02314a

    34. [34]

      Sauerbrey, G. Z. Phys. 1959, 155 (2), 206.  doi: 10.1007/BF01337937

    35. [35]

      Michaels, T. C. T.; Buell, A. K.; Terentjev, E. M.; Knowles, T. P. J. J. Phys. Chem. Lett. 2014, 5 (4), 695. doi: 10.1021/jz4024833  doi: 10.1021/jz4024833

    36. [36]

      Voinova, M. V.; Rodahl, M.; Jonson, M.; Kasemo, B. Phys. Scr. 1999, 59 (5), 391. doi: 10.1238/Physica.Regular.059a00391  doi: 10.1238/Physica.Regular.059a00391

    37. [37]

      Li, S.; Liu, F. F.; Yu, L. L.; Zhao, Y. J.; Dong, X. Y. Acta Phys. -Chim. Sin. 2016, 32 (6), 1391.  doi: 10.3866/PKU.WHXB201603221

    38. [38]

      Deng, J.; Ma, T.; Chang, Z. W.; Zhao, W. Z.; Yang, J. Acta Phys. -Chim. Sin. , 2020, 36 (4), 1905019.  doi: 10.3866/PKU.WHXB201905019

    39. [39]

      Mao, X. B.; Wang, C. X.; Liu, L.; Ma, X. J.; Niu, L.; Yang, Y. L.; Wang, C. Acta Phys. -Chim. Sin. 2010, 26 (4), 850.  doi: 10.3866/PKU.WHXB20100440

    40. [40]

      Qahwash, I. M.; Boire, A.; Lanning, J.; Pytel, T. K. P.; Meredith, S. C. J. Biol. Chem. 2007, 282 (51), 36987. doi: 10.1074/jbc.M702146200  doi: 10.1074/jbc.M702146200

    41. [41]

      Trigg, B. J.; Lee, C. F.; Vaux, D. J.; Jean, L. Biochem. J. 2013, 456 (1), 67. doi: 10.1042/BJ20130605  doi: 10.1042/BJ20130605

    42. [42]

      He, C. X.; Yuan, A. P.; Zhang, Q. L.; Ren, X. Z.; Li, C. H.; Liu, J. H. Acta Phys. -Chim. Sin. 2012, 28 (11), 2721.  doi: 10.3866/PKU.WHXB201207191

    43. [43]

      Saraiva, A. M.; Pereira, M. C.; Brezesinski, G. Langmuir 2010, 26 (14), 12060. doi: 10.1021/la101203h  doi: 10.1021/la101203h

    44. [44]

      Haataja, L.; Gurlo, T.; Huang, C. J.; Butler, P. C. Endocr. Rev. 2008, 29 (3), 303. doi: 10.1210/er.2007-0037  doi: 10.1210/er.2007-0037

    45. [45]

      Zhang, Y. C.; Lu, L.; Jia, J. P.; Jia, L. F.; Geula, C.; Pei, J. J.; Xu, Z. Q.; Qin, W.; Liu, R. Q.; Li, D.; et al. PLoS One 2014, 9 (1), e85885. doi: 10.1371/journal.pone.0085885  doi: 10.1371/journal.pone.0085885

  • 加载中
    1. [1]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    2. [2]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    3. [3]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    6. [6]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    7. [7]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    8. [8]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    9. [9]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    10. [10]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    11. [11]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    12. [12]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    13. [13]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    14. [14]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    15. [15]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    16. [16]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    17. [17]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    18. [18]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    19. [19]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    20. [20]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

Metrics
  • PDF Downloads(8)
  • Abstract views(339)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return