Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study
- Corresponding author: Hongyan He, hyhe@ipe.ac.cn
Citation: Zhiwei Wu, Weilu Ding, Yaqin Zhang, Yanlei Wang, Hongyan He. Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200202. doi: 10.3866/PKU.WHXB202002021
Dong, K.; Liu, X. M.; Dong, H. F.; Zhang, X. P.; Zhang, S. J. Chem. Rev. 2017, 117, 6636. doi: 10.1021/acs.chemrev.6b00776
doi: 10.1021/acs.chemrev.6b00776
Berthod, A.; Ruiz-Ángel, M. J.; Carda-Broch, S. J. Chromatogr. A 2018, 1559, 2. doi: 10.1016/j.chroma.2017.09.044
doi: 10.1016/j.chroma.2017.09.044
Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792. doi: 10.1126/science.1090313
doi: 10.1126/science.1090313
Wei, J.; Dong, H. X.; Chen, X.; Yang, Y. X.; Fang, D. W.; Guan, W.; Yang, J. Z. Acta Phys. -Chim. Sin. 2018, 34, 927.
doi: 10.3866/PKU.WHXB201801112
Caminiti, R.; Gontrani, L. The Structure of Ionic Liquids; Springer: Cham, Switzerland; 2013, pp. 127-148.
Zhang, S. J.; Wang, J. J.; Lu, X. M.; Zhou, Q. Structures and Interactions of Ionic Liquids; Springer: Berlin, Germany; 2013, pp. 1-38.
Wang, B. S.; Qin, L.; Mu, T. C.; Xue, Z. M.; Gao, G. H. Chem. Rev. 2017, 117, 7113. doi: 10.1021/acs.chemrev.6b00594
doi: 10.1021/acs.chemrev.6b00594
Chen, Y.; Mu, T. C. Green Energy Environ. 2019, 4, 95. doi: 10.1016/j.gee.2019.01.012
doi: 10.1016/j.gee.2019.01.012
Zhao, Q.; Chu, H. W.; Zhao, B. F.; Liang, Z.; Zhang, L. H.; Zhang, Y. K. Trac-Trend. Anal. Chem. 2018, 108, 239. doi: 10.1016/j.trac.2018.09.008
doi: 10.1016/j.trac.2018.09.008
Kumar, A.; Venkatesu, P. Biophys. Rev. 2018, 10, 841. doi: 10.1007/s12551-018-0411-x
doi: 10.1007/s12551-018-0411-x
Tome, L. I.; Jorge, M.; Gomes, J. R.; Coutinho, J. A. J. Phys. Chem. B 2012, 116, 1831. doi: 10.1021/jp209625e
doi: 10.1021/jp209625e
Yang, H. P.; Chen, L.; Zhou, C. S.; Yu, X. J.; Yagoub, A. E. A.; Ma, H. L. Food Chem. 2018, 245, 346. doi: 10.1016/j.foodchem.2017.10.110
doi: 10.1016/j.foodchem.2017.10.110
Pei, Y. C.; Li, L.; Li, Z. Y.; Wu, C. Z.; Wang, J. J. Sep. Sci. Technol. 2012, 47, 277. doi: 10.1080/01496395.2011.609241
doi: 10.1080/01496395.2011.609241
Fang, F.; Zhao, Q.; Li, X.; Liang, Z.; Zhang, L. H.; Zhang, Y. Q. Anal. Chim. Acta 2016, 945, 39. doi: 10.1016/j.aca.2016.09.032
doi: 10.1016/j.aca.2016.09.032
Schröder, C. Top. Curr. Chem. 2017, 375, 25. doi: 10.1007/s41061-017-0110-2
doi: 10.1007/s41061-017-0110-2
Kumar, A.; Bisht, M.; Venkatesu, P. Int. J. Biol. Macromol. 2017, 96, 611. doi: 10.1016/j.ijbiomac.2016.12.005
doi: 10.1016/j.ijbiomac.2016.12.005
Hunt, P. A. Top. Curr. Chem. 2017, 375, 59. doi: 10.1007/s41061-017-0142-7
doi: 10.1007/s41061-017-0142-7
Scheiner, S.; Kar, T.; Gu, Y. J. Biol. Chem. 2001, 276, 9832. doi: 10.1074/jbc.M010770200
doi: 10.1074/jbc.M010770200
Dong, K.; Zhang, S. J. Chem. -Eur. J. 2012, 18, 2748. doi: 10.1002/chem.201101645
doi: 10.1002/chem.201101645
Kim, H. S.; Ha, S. H.; Sethaphong, L.; Koo, Y. M.; Yingling, Y. G. Phys. Chem. Chem. Phys. 2014, 16, 2944. doi: 10.1039/C3CP52516C
doi: 10.1039/C3CP52516C
Yan, H.; Wu, J. Y.; Dai, G. L.; Zhong, A. G.; Chen, H.; Yang, J. G.; Han, D. M. J. Lumin. 2012, 132, 622. doi: 10.1016/j.jlumin.2011.10.026
doi: 10.1016/j.jlumin.2011.10.026
Nandi, S.; Parui, S.; Halder, R.; Jana, B.; Bhattacharyya, K. Biophys. Rev. 2018, 10, 757. doi: 10.1007/s12551-017-0331-1
doi: 10.1007/s12551-017-0331-1
Bai, S.; Chang, Y.; Liu, X. J.; Liu, F. F. Acta Phys. -Chim. Sin. 2014, 30, 1239.
doi: 10.3866/PKU.WHXB201405151
Kumar, A.; Bisht, M.; Venkatesu, P. RSC Adv. 2016, 6, 18763. doi: 10.1039/c5ra26690d
doi: 10.1039/c5ra26690d
Klähn, M.; Lim, G. S.; Seduraman, A.; Wu, P. Phys. Chem. Chem. Phys. 2011, 13, 1649. doi: 10.1039/c0cp01509a
doi: 10.1039/c0cp01509a
Mendonca, C. M. N.; Balogh, D. T.; Barbosa, S. C.; Sintra, T. E.; Ventura, S. P. M.; Martins, L. F. G.; Morgado, P.; Filipe, E. J. M.; Coutinho, J. A. P.; Oliveira, O. N.; et al. Phys. Chem. Chem. Phys. 2018, 20, 29764. doi: 10.1039/c8cp05035j
doi: 10.1039/c8cp05035j
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D. 01; Gaussian Inc.; Wallingford, CT, USA, 2013.
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. Chem. Phys. Lett. 1992, 197, 499. doi: 10.1016/0009-2614(92)85807-M
doi: 10.1016/0009-2614(92)85807-M
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
doi: 10.1007/s00214-007-0310-x
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344
doi: 10.1063/1.3382344
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. doi: 10.1021/jp810292n
doi: 10.1021/jp810292n
Kessler, J.; Jakubek, M.; Dolenský, B.; Bouř, P. J. Comput. Chem. 2012, 33, 2310. doi: 10.1002/jcc.23063
doi: 10.1002/jcc.23063
Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94, 1887. doi: 10.1021/cr00031a008
doi: 10.1021/cr00031a008
Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; DePrince, A. E.; Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M.; et al. J. Chem. Theory Comput. 2017, 13, 3185. doi: 10.1021/acs.jctc.7b00174
doi: 10.1021/acs.jctc.7b00174
Saleh, G.; Gatti, C.; Presti, L. Comput. Theor. Chem. 2012, 998, 148. doi: 10.1016/j.comptc.2012.07.014
doi: 10.1016/j.comptc.2012.07.014
Johnson, E. R.; Keinan, S.; Mori-Sánchez, P; Contreras-García, J.; Cohen, A. J.; Yang, W. T. J. Am. Chem. Soc. 2010, 132, 6498. doi: 10.1021/ja100936w
doi: 10.1021/ja100936w
Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885
doi: 10.1002/jcc.22885
Heßelmann, A.; Jansen, G. Phys. Chem. Chem. Phys. 2003, 5, 5010. doi: 10.1039/B310529F
doi: 10.1039/B310529F
Hohenstein, E. G.; Sherrill, C. D. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 304. doi: 10.1002/wcms.84
doi: 10.1002/wcms.84
Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. J. Comput. Chem. 2019, 40, 2868. doi: 10.1002/jcc.26068
doi: 10.1002/jcc.26068
Cremer, D.; Kraka, E. Angew. Chem., Int. Ed. Engl. 1984, 23, 627. doi: 10.1002/anie.198406271
doi: 10.1002/anie.198406271
Bader, R. F. W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320. doi: 10.1063/1.1677699
doi: 10.1063/1.1677699
Zhang, Y. Q.; He, H. Y.; Dong, K.; Fan, M. H.; Zhang, S. J. RSC Adv. 2017, 7, 12670. doi: 10.1039/c6ra27059j
doi: 10.1039/c6ra27059j
He, H. Y.; Zhang, S. J.; Liu, X. M.; Wang, J. Q.; Yao, X. Q.; Zhang, X. P. Fluid Phase Equilib. 2013, 360, 169. doi: 10.1016/j.fluid.2013.09.007
doi: 10.1016/j.fluid.2013.09.007
Rao, S. S.; Gejji, S. P. J. Phys. Chem. A 2016, 120, 5665. doi: 10.1021/acs.jpca.6b03985
doi: 10.1021/acs.jpca.6b03985
Matthews, R. P.; Welton, T.; Hunt, P. A. Phys. Chem. Chem. Phys. 2014, 16, 3238. doi: 10.1039/c3cp54672a
doi: 10.1039/c3cp54672a
Ju, Z. Y.; Yao, X. Q.; Luo, Z. F.; Cao, M. J.; Xiao, W. H. Carbohydr. Res. 2020, 487, 107882. doi: 10.1016/j.carres.2019.107882
doi: 10.1016/j.carres.2019.107882
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
Xin Huang , Yi Zhao , Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Chenlu Huang , Xinyu Yang , Qingyu Yu , Linhua Zhang , Dunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036