Citation: Zhiwei Wu, Weilu Ding, Yaqin Zhang, Yanlei Wang, Hongyan He. Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200202. doi: 10.3866/PKU.WHXB202002021 shu

Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study

  • Corresponding author: Hongyan He, hyhe@ipe.ac.cn
  • Received Date: 19 February 2020
    Revised Date: 21 March 2020
    Accepted Date: 6 April 2020
    Available Online: 10 April 2020

    Fund Project: the National Science Fund for Excellent Young Scholars, China 21922813Key Program of National Natural Science Foundation of China 21834006General program of National Natural Science Foundation of China 21978027Key Research Program of Frontier Sciences of CAS QYZDB-SSW-SLH022Youth Innovation Promotion Association of CAS 2017066

  • Ionic liquids (ILs) are thermally and chemically stable and have adjustable structures, which gives them the potential to be used as green, efficient biomolecular solvents. Given the critical role of ILs in dissolving biomolecules, the mechanism of interaction between them deserves further study. Herein, density functional theory (DFT) calculations, using the SMD implicit water solvent model, were employed to study the interaction and mechanism between a hydrophobic zwitterionic amino acid (Tyr) and a series of imidazolium ILs with different alkyl chain lengths and methylation sites. The contributions of hydrogen bonding (H-bonding), electrostatic effects, induction, and dispersion to the intermolecular interactions were determined by combining the symmetry-adapted perturbation theory (SAPT), the atoms in molecules (AIM) theory, and reduced density gradient (RDG) analysis. The results indicate that the H-bonding between the IL cation and Tyr is stronger than that between the IL anion and Tyr; however, the binding between either ion and Tyr is dominated by electrostatic effects. By contrast, the difference between the induction and dispersion forces is small when methylation occurs on the C2 site of the imidazolium cation; whereas, it is significantly large when methylation takes place on the N3 site. This is rationalized by the interaction patterns that vary based on the methylation site. H-bonding and π+-π stacking interactions between the imidazole and benzene rings are dominant during C2-methylation, while H-bonding and CAlkyl-H…π interactions between the alkyl chain and benzene ring are dominant during N3-methylation. Increasing the side alkyl chain length has different effects on the interaction energy to cations with different methylation sites. During N3-methylation, when the side alkyl chain length increases from 4 to 12, there are significant van der Waals interactions between the Tyr benzene and the side alkyl chain. However, these van der Waals interactions are inapparent when methylation takes place on the C2 site. Finally, the synergetic effect of the H-bonding and the interaction between the benzene and the side alkyl chain for C2-methylation is greater than the H-bonding and the interaction between the imidazole and benzene rings for N3-methylation, when the side alkyl chain length n > 9. Therefore, the interaction strength and mechanism in these imidazolium-Tyr complexes can be regulated by changing the methylation site and the side alkyl chain length of the cation. Further study of ion-pair and Tyr reveals that the change tendency of the interaction energy of IL-Tyr systems is consistent with that of cation-Tyr cases, and the ion pair further stabilizes the binding with Tyr. These results illustrate the interaction mechanism of IL-Tyr systems and provide a novel strategy for the design and screening of functional ILs for amino acid extraction and separation in the future.
  • 加载中
    1. [1]

      Dong, K.; Liu, X. M.; Dong, H. F.; Zhang, X. P.; Zhang, S. J. Chem. Rev. 2017, 117, 6636. doi: 10.1021/acs.chemrev.6b00776  doi: 10.1021/acs.chemrev.6b00776

    2. [2]

      Berthod, A.; Ruiz-Ángel, M. J.; Carda-Broch, S. J. Chromatogr. A 2018, 1559, 2. doi: 10.1016/j.chroma.2017.09.044  doi: 10.1016/j.chroma.2017.09.044

    3. [3]

      Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792. doi: 10.1126/science.1090313  doi: 10.1126/science.1090313

    4. [4]

      Wei, J.; Dong, H. X.; Chen, X.; Yang, Y. X.; Fang, D. W.; Guan, W.; Yang, J. Z. Acta Phys. -Chim. Sin. 2018, 34, 927.  doi: 10.3866/PKU.WHXB201801112

    5. [5]

      Caminiti, R.; Gontrani, L. The Structure of Ionic Liquids; Springer: Cham, Switzerland; 2013, pp. 127-148.

    6. [6]

      Zhang, S. J.; Wang, J. J.; Lu, X. M.; Zhou, Q. Structures and Interactions of Ionic Liquids; Springer: Berlin, Germany; 2013, pp. 1-38.

    7. [7]

      Wang, B. S.; Qin, L.; Mu, T. C.; Xue, Z. M.; Gao, G. H. Chem. Rev. 2017, 117, 7113. doi: 10.1021/acs.chemrev.6b00594  doi: 10.1021/acs.chemrev.6b00594

    8. [8]

      Chen, Y.; Mu, T. C. Green Energy Environ. 2019, 4, 95. doi: 10.1016/j.gee.2019.01.012  doi: 10.1016/j.gee.2019.01.012

    9. [9]

      Zhao, Q.; Chu, H. W.; Zhao, B. F.; Liang, Z.; Zhang, L. H.; Zhang, Y. K. Trac-Trend. Anal. Chem. 2018, 108, 239. doi: 10.1016/j.trac.2018.09.008  doi: 10.1016/j.trac.2018.09.008

    10. [10]

      Kumar, A.; Venkatesu, P. Biophys. Rev. 2018, 10, 841. doi: 10.1007/s12551-018-0411-x  doi: 10.1007/s12551-018-0411-x

    11. [11]

      Tome, L. I.; Jorge, M.; Gomes, J. R.; Coutinho, J. A. J. Phys. Chem. B 2012, 116, 1831. doi: 10.1021/jp209625e  doi: 10.1021/jp209625e

    12. [12]

      Yang, H. P.; Chen, L.; Zhou, C. S.; Yu, X. J.; Yagoub, A. E. A.; Ma, H. L. Food Chem. 2018, 245, 346. doi: 10.1016/j.foodchem.2017.10.110  doi: 10.1016/j.foodchem.2017.10.110

    13. [13]

      Pei, Y. C.; Li, L.; Li, Z. Y.; Wu, C. Z.; Wang, J. J. Sep. Sci. Technol. 2012, 47, 277. doi: 10.1080/01496395.2011.609241  doi: 10.1080/01496395.2011.609241

    14. [14]

      Fang, F.; Zhao, Q.; Li, X.; Liang, Z.; Zhang, L. H.; Zhang, Y. Q. Anal. Chim. Acta 2016, 945, 39. doi: 10.1016/j.aca.2016.09.032  doi: 10.1016/j.aca.2016.09.032

    15. [15]

      Schröder, C. Top. Curr. Chem. 2017, 375, 25. doi: 10.1007/s41061-017-0110-2  doi: 10.1007/s41061-017-0110-2

    16. [16]

      Kumar, A.; Bisht, M.; Venkatesu, P. Int. J. Biol. Macromol. 2017, 96, 611. doi: 10.1016/j.ijbiomac.2016.12.005  doi: 10.1016/j.ijbiomac.2016.12.005

    17. [17]

      Hunt, P. A. Top. Curr. Chem. 2017, 375, 59. doi: 10.1007/s41061-017-0142-7  doi: 10.1007/s41061-017-0142-7

    18. [18]

      Scheiner, S.; Kar, T.; Gu, Y. J. Biol. Chem. 2001, 276, 9832. doi: 10.1074/jbc.M010770200  doi: 10.1074/jbc.M010770200

    19. [19]

      Dong, K.; Zhang, S. J. Chem. -Eur. J. 2012, 18, 2748. doi: 10.1002/chem.201101645  doi: 10.1002/chem.201101645

    20. [20]

      Kim, H. S.; Ha, S. H.; Sethaphong, L.; Koo, Y. M.; Yingling, Y. G. Phys. Chem. Chem. Phys. 2014, 16, 2944. doi: 10.1039/C3CP52516C  doi: 10.1039/C3CP52516C

    21. [21]

      Yan, H.; Wu, J. Y.; Dai, G. L.; Zhong, A. G.; Chen, H.; Yang, J. G.; Han, D. M. J. Lumin. 2012, 132, 622. doi: 10.1016/j.jlumin.2011.10.026  doi: 10.1016/j.jlumin.2011.10.026

    22. [22]

      Nandi, S.; Parui, S.; Halder, R.; Jana, B.; Bhattacharyya, K. Biophys. Rev. 2018, 10, 757. doi: 10.1007/s12551-017-0331-1  doi: 10.1007/s12551-017-0331-1

    23. [23]

      Bai, S.; Chang, Y.; Liu, X. J.; Liu, F. F. Acta Phys. -Chim. Sin. 2014, 30, 1239.  doi: 10.3866/PKU.WHXB201405151

    24. [24]

      Kumar, A.; Bisht, M.; Venkatesu, P. RSC Adv. 2016, 6, 18763. doi: 10.1039/c5ra26690d  doi: 10.1039/c5ra26690d

    25. [25]

      Klähn, M.; Lim, G. S.; Seduraman, A.; Wu, P. Phys. Chem. Chem. Phys. 2011, 13, 1649. doi: 10.1039/c0cp01509a  doi: 10.1039/c0cp01509a

    26. [26]

      Mendonca, C. M. N.; Balogh, D. T.; Barbosa, S. C.; Sintra, T. E.; Ventura, S. P. M.; Martins, L. F. G.; Morgado, P.; Filipe, E. J. M.; Coutinho, J. A. P.; Oliveira, O. N.; et al. Phys. Chem. Chem. Phys. 2018, 20, 29764. doi: 10.1039/c8cp05035j  doi: 10.1039/c8cp05035j

    27. [27]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D. 01; Gaussian Inc.; Wallingford, CT, USA, 2013.

    28. [28]

      Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. Chem. Phys. Lett. 1992, 197, 499. doi: 10.1016/0009-2614(92)85807-M  doi: 10.1016/0009-2614(92)85807-M

    29. [29]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x  doi: 10.1007/s00214-007-0310-x

    30. [30]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344  doi: 10.1063/1.3382344

    31. [31]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. doi: 10.1021/jp810292n  doi: 10.1021/jp810292n

    32. [32]

      Kessler, J.; Jakubek, M.; Dolenský, B.; Bouř, P. J. Comput. Chem. 2012, 33, 2310. doi: 10.1002/jcc.23063  doi: 10.1002/jcc.23063

    33. [33]

      Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94, 1887. doi: 10.1021/cr00031a008  doi: 10.1021/cr00031a008

    34. [34]

      Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; DePrince, A. E.; Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M.; et al. J. Chem. Theory Comput. 2017, 13, 3185. doi: 10.1021/acs.jctc.7b00174  doi: 10.1021/acs.jctc.7b00174

    35. [35]

      Saleh, G.; Gatti, C.; Presti, L. Comput. Theor. Chem. 2012, 998, 148. doi: 10.1016/j.comptc.2012.07.014  doi: 10.1016/j.comptc.2012.07.014

    36. [36]

      Johnson, E. R.; Keinan, S.; Mori-Sánchez, P; Contreras-García, J.; Cohen, A. J.; Yang, W. T. J. Am. Chem. Soc. 2010, 132, 6498. doi: 10.1021/ja100936w  doi: 10.1021/ja100936w

    37. [37]

      Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885  doi: 10.1002/jcc.22885

    38. [38]

      Heßelmann, A.; Jansen, G. Phys. Chem. Chem. Phys. 2003, 5, 5010. doi: 10.1039/B310529F  doi: 10.1039/B310529F

    39. [39]

      Hohenstein, E. G.; Sherrill, C. D. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 304. doi: 10.1002/wcms.84  doi: 10.1002/wcms.84

    40. [40]

      Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. J. Comput. Chem. 2019, 40, 2868. doi: 10.1002/jcc.26068  doi: 10.1002/jcc.26068

    41. [41]

      Cremer, D.; Kraka, E. Angew. Chem., Int. Ed. Engl. 1984, 23, 627. doi: 10.1002/anie.198406271  doi: 10.1002/anie.198406271

    42. [42]

      Bader, R. F. W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320. doi: 10.1063/1.1677699  doi: 10.1063/1.1677699

    43. [43]

      Zhang, Y. Q.; He, H. Y.; Dong, K.; Fan, M. H.; Zhang, S. J. RSC Adv. 2017, 7, 12670. doi: 10.1039/c6ra27059j  doi: 10.1039/c6ra27059j

    44. [44]

      He, H. Y.; Zhang, S. J.; Liu, X. M.; Wang, J. Q.; Yao, X. Q.; Zhang, X. P. Fluid Phase Equilib. 2013, 360, 169. doi: 10.1016/j.fluid.2013.09.007  doi: 10.1016/j.fluid.2013.09.007

    45. [45]

      Rao, S. S.; Gejji, S. P. J. Phys. Chem. A 2016, 120, 5665. doi: 10.1021/acs.jpca.6b03985  doi: 10.1021/acs.jpca.6b03985

    46. [46]

      Matthews, R. P.; Welton, T.; Hunt, P. A. Phys. Chem. Chem. Phys. 2014, 16, 3238. doi: 10.1039/c3cp54672a  doi: 10.1039/c3cp54672a

    47. [47]

      Ju, Z. Y.; Yao, X. Q.; Luo, Z. F.; Cao, M. J.; Xiao, W. H. Carbohydr. Res. 2020, 487, 107882. doi: 10.1016/j.carres.2019.107882  doi: 10.1016/j.carres.2019.107882

  • 加载中
    1. [1]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    2. [2]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    3. [3]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    6. [6]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    7. [7]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    8. [8]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    9. [9]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    10. [10]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    11. [11]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    12. [12]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    13. [13]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    14. [14]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    15. [15]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    16. [16]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    17. [17]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    18. [18]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    19. [19]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    20. [20]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

Metrics
  • PDF Downloads(7)
  • Abstract views(182)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return