Citation: Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200201. doi: 10.3866/PKU.WHXB202002017 shu

Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture

  • Corresponding author: Hui Wang, wanghh@sari.ac.cn Yuhan Sun, sunyh@sari.ac.cn
  • Received Date: 17 February 2020
    Revised Date: 13 March 2020
    Accepted Date: 27 March 2020
    Available Online: 31 March 2020

    Fund Project: the National Natural Science Foundation of China 21776296the National Natural Science Foundation of China 21905291National Key Research and Development Program of China 2017YFB0602203Strategic Priority Research Program of the Chinese Academy of Sciences XDA21090201the Chinese Academy of Sciences ZDRW-ZS-2018-1-3the Shanghai Sailing Program, China 19YF1453000

  • Catalytic hydrogenation of CO2 to methanol has attracted considerable attention due to its potential in alleviating global warming and mitigating the dependence on fossil fuels. Cu-based catalysts are widely used in industry because of their high activity for methanol production. However, the reaction still suffers from low methanol selectivity because of the generation of CO as a by-product via the reverse water gas shift reaction (RWGS). The formation of another by-product H2O leads to inevitable Cu sintering, which decreases the methanol production rate. It is well known that CO can alter competitive molecular adsorption on the surface and the redox behavior of the active sites; hence, CO doping in feed gas might not only inhibit the RWGS but also minimize surface poisoning by the adsorbed oxygen. On the other hand, CO2 hydrogenation to methanol over Cu-based catalysts is a structure-sensitive reaction, and a change in the precursor can have a remarkable influence on the structure and morphology of the catalyst, and ultimately, the catalytic performance. In this work, Cu/ZnO/Al2O3 catalysts have been prepared via a hydrotalcite-like precursor (CHT-CZA) and a complex phase precursor (CNP-CZA) using co-precipitation and ammonia evaporation methods. Subsequently, the performance of the two types of catalysts with different CO contents (CO2: CO:H2:N2 = x:(24.5 - x):72.5:3) is compared at 250 ℃ and 5 MPa in order to explore the role of CO. The evaluation results show that both catalysts follow a similar trend in the conversion of CO and CO2 as well as the space-time-yield (STY) of MeOH and H2O. The conversions of CO2 and STYH2O decrease gradually with an increase in the CO volume, but STYMeOH is positively correlated with the CO volume. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis reveals that the amount of reduced Cu species on the surface increases with increasing CO content. Judging from these results, the introduction of CO inhibits the RWGS and enhances the methanol yield for both catalysts by removing the surface oxygen as the reducing agent and thereby facilitating the exposure of the active reduced Cu species. On the other hand, transmission electron microscopy (TEM) observations indicate the doped CO may cause agglomeration of particles due to over-reduction, leading to gradual catalyst deactivation. Compared with the traditional CNP-CZA, the catalyst derived from hydrotalcite-like compounds exhibits better activity and long-term stability under all atmospheres, at different CO doping levels. This is because the hydrotalcite-like layer structure helps maintain the active metal state and confine the structure by limiting the agglomeration of Cu species.
  • 加载中
    1. [1]

      Song, C. S. Catal. Today 2017, 115, 2. doi: 10.1016/j.cattod.2006.02.029  doi: 10.1016/j.cattod.2006.02.029

    2. [2]

      Aas, N.; Li, Y. X.; Bowker, M. Phys. Condes. Matter 1991, 3, S281. doi: 10.1088/0953-8984/3/S/044  doi: 10.1088/0953-8984/3/S/044

    3. [3]

      Choi, E. J.; Lee, Y. H.; Lee, D. W.; Moon, D. J.; Lee, K. Y. Mol. Catal. 2017, 434, 146. doi: 10.1016/j.mcat.2017.02.005  doi: 10.1016/j.mcat.2017.02.005

    4. [4]

      Ortelli, E. E.; Wambach. J.; Wokaun, A. Appl. Catal. A: Gen. 2001, 216, 227. doi: 10.1016/s0926-860x(01)00569-5  doi: 10.1016/s0926-860x(01)00569-5

    5. [5]

      Liu, X. M; Lu, G. Q. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s  doi: 10.1021/ie020979s

    6. [6]

      Olah, G, A. Appl. Catal. A: Gen. 2005, 44, 2636. doi: 10.1002/anie.200462121  doi: 10.1002/anie.200462121

    7. [7]

      Melián-Cabrera, I.; Granados, M. L.; Fierro, J. L. G. Catal. Lett. 2002, 79, 165. doi: 10.1023/A:1015316610657  doi: 10.1023/A:1015316610657

    8. [8]

      Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Chem. Eng. Res. Des. 2014, 92, 2557. doi: 10.1016/j.cherd.2014.03.005  doi: 10.1016/j.cherd.2014.03.005

    9. [9]

      Gao, P.; Li, F.; Xiao, F. K.; Zhao, N.; Sun, N. N.; Wei, W.; Zhong, L. S.; Sun, Y. H. Catal. Sci. Technol. 2012, 2, 1447. doi: 10.1039/C2CY00481J  doi: 10.1039/C2CY00481J

    10. [10]

      Alejandre, A.; Medina, F.; Rodriguez, X.; Salagre, P.; Sueiras, J. E. J. Catal. 1999, 188, 311. doi: 10.1006/jcat.1999.2625  doi: 10.1006/jcat.1999.2625

    11. [11]

      Bhattacharyya, A.; Chang, V. W.; Schumacher, D. J. Appl. Clay Sci. 1998, 13, 317. doi: 10.1016/S0169-1317(98)00030-1  doi: 10.1016/S0169-1317(98)00030-1

    12. [12]

      Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173. doi: 10.1016/0920-5861(91)80068-K  doi: 10.1016/0920-5861(91)80068-K

    13. [13]

      Climent, M. J.; Corma, A.; Iborra, S.; Primo, J. J. Catal. 1995, 151, 60. doi: 10.1006/jcat.1995.1008  doi: 10.1006/jcat.1995.1008

    14. [14]

      Constantino, V. R. L.; Pinnavaia, T. J. Inorg. Chem. 1995, 34, 883. doi: 10.1021/ic00108a020  doi: 10.1021/ic00108a020

    15. [15]

      Corma, A.; Fornes, V.; Martinaranda, R. M.; Rey, F. J. Catal. 1992, 134, 58. doi: 10.1016/0021-9517(92)90209-Z  doi: 10.1016/0021-9517(92)90209-Z

    16. [16]

      Fornasari, G.; Gazzano, M.; Matteuzzi, D.; Trifiro, F. Appl. Clay Sci. 1995, 10, 69. doi: 10.1016/0169-1317(95)00022-V  doi: 10.1016/0169-1317(95)00022-V

    17. [17]

      Gao, P.; Li, F.; Zhao, N.; Wang, H.; Wei, W.; Sun, Y. H. Acta Phys. -Chim. Sin. 2014, 30, 1155.  doi: 10.3866/PKU.WHXB201401252

    18. [18]

      Gao, P.; Li, F.; Xiao, F. K.; Zhao, N.; Wei, W.; Zhong, L. S.; Sun, Y. H. Catal. Today 2012, 194, 9. doi: 10.1016/j.cattod.2012.06.012  doi: 10.1016/j.cattod.2012.06.012

    19. [19]

      Gao, P.; Li, F.; Zhan, H. J.; Zhao, N.; Xiao, F. K.; Wei, W.; Zhong, L. S.; Wang, H.; Sun, Y. H. J. Catal. 2013, 298, 51. doi: 10.1016/j.jcat.2012.10.030  doi: 10.1016/j.jcat.2012.10.030

    20. [20]

      Gao, P.; Li, F.; Zhan, H. J.; Zhao, N.; Xiao, F. K.; Wei, W.; Zhong, L. S.; Sun, Y. H. Catal. Commun. 2014, 50, 78. doi: 10.1016/j.catcom.2014.03.006  doi: 10.1016/j.catcom.2014.03.006

    21. [21]

      Gao, P.; Li, F.; Zhao, N.; Xiao, F. K.; Wei, W.; Zhong, L. S.; Sun, Y. H. Appl. Catal. A: Gen. 2013, 468, 442. doi: 10.1016/j.apcata.2013.09.026  doi: 10.1016/j.apcata.2013.09.026

    22. [22]

      Gao, P.; Zhong, L. S.; Zhang, L. N.; Wang, H.; Zhao, N.; Wei, W.; Sun, Y. H. Catal. Sci. Technol. 2015, 5, 4365. doi: 10.1039/C5CY00372E  doi: 10.1039/C5CY00372E

    23. [23]

      Sahibzada, M.; Metcalfe, I. S.; Chadwick, D. J. Catal. 1998, 174, 111. doi: 10.1006/jcat.1998.1964  doi: 10.1006/jcat.1998.1964

    24. [24]

      Lee, J. S.; Lee, K. H.; Lee, S. Y. J. Catal. 1993, 144, 414. doi: 10.1006/jcat.1993.1342  doi: 10.1006/jcat.1993.1342

    25. [25]

      Yuan, Z.; Wang, L.; Wang, J.; Xia, S.; Chen, P.; Hou, Z.; Zheng, X. Appl. Catal. B: Environ. 2011, 101, 431. doi: 10.1016/j.apcatb.2010.10.013  doi: 10.1016/j.apcatb.2010.10.013

    26. [26]

      Evans, J. W.; Wainwright, M. S.; Bridgewater, A. J.; Young, D. J. Appl. Catal. 1983, 7, 75. doi:10.1016/0166-9834(83)80239-5  doi: 10.1016/0166-9834(83)80239-5

    27. [27]

      Cheng, J.; Wang, X.; Yu, J.; Hao, Z.; Xu, Z. P. J. Phys. Chem. C 2011, 115, 6651. doi: 10.1021/jp112031e  doi: 10.1021/jp112031e

    28. [28]

      Xiao, S.; Zhang, Y. F.; Gao, P.; Zhong, L. S.; Li, X. P.; Zhang, Z. Z.; Wang, H.; Wei, W.; Sun, Y. H. Catal. Today 2017, 281, 327. doi: 10.1016/j.cattod.2016.02.004  doi: 10.1016/j.cattod.2016.02.004

    29. [29]

      Liao, P. Y.; Zhang, C.; Zhang, L. J.; Yang, Y. Z.; Zhong, L. S.; Guo, X. Y.; Wang, H.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 1672.  doi: 10.3866/PKU.WHXB201704143

    30. [30]

      Velu, S.; Sabde, D. P.; Shah, N.; Sivasanker, S. Chem. Mater. 1998, 10, 3451. doi: 10.1021/cm980185x  doi: 10.1021/cm980185x

    31. [31]

      Zhang, C.; Yang, H. Y.; Gao, P.; Zhu, H.; Zhong, L. S.; Wang, H.; Wei, W.; Sun, Y. H. J. CO2 Util. 2017, 17, 263. doi: 10.1016/j.jcou.2016.11.015  doi: 10.1016/j.jcou.2016.11.015

    32. [32]

      Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. J. Catal. 2010, 271, 178. doi: 10.1016/j.jcat.2010.01.009  doi: 10.1016/j.jcat.2010.01.009

    33. [33]

      Zhang, L. H.; Li, F.; Evans, D. G.; Duan, X. Mater. Chem. Phys. 2004, 87, 402. doi: 10.1016/j.matchemphys.2004.06.010  doi: 10.1016/j.matchemphys.2004.06.010

    34. [34]

      Kuhl, S.; Tarasov, A.; Zander, S.; Kasatkin, I.; Behrens, M. Chem. Eur. J. 2014, 20, 3782. doi: 10.1002/chem.201302599  doi: 10.1002/chem.201302599

    35. [35]

      Wu, G. D.; Wang, X. L.; Wei, W.; Sun, Y. H. Appl. Catal. A: Gen. 2010, 377, 107. doi: 10.1016/j.apcata.2010.01.023  doi: 10.1016/j.apcata.2010.01.023

    36. [36]

      Di Cosimo, J. I.; Diez, V. K.; Xu, M.; Iglesia, E.; Apesteguia, C. R. J. Catal. 1998, 178, 499. doi: 10.1006/jcat.1998.2161  doi: 10.1006/jcat.1998.2161

    37. [37]

      Klier, K.; Chatikavanij, V.; Herman, R. G.; Simmons, G. W. J. Catal. 1982, 74, 343. doi: 10.1016/0021-9517(82)90040-9  doi: 10.1016/0021-9517(82)90040-9

    38. [38]

      Burch, R.; Golunski, S. E.; Spencer, M. S. Catal. Lett. 1990, 5, 55. doi: 10.1007/BF00772093  doi: 10.1007/BF00772093

    39. [39]

      Fujitani, T.; Saito, M.; Kanai, Y.; Kakumoto, T.; Watanabe, T.; Nakamura, J.; Uchijima, T. Catal. Lett. 1994, 25, 271. doi: 10.1007/BF00816307  doi: 10.1007/BF00816307

    40. [40]

      Yang, C.; Ma, Z.Y.; Zhao, N.; Wei, W.; Hu, T. D.; Sun, Y. H. Catal. Today 2006, 115, 222. doi: 10.1016/j.cattod.2006.02.077  doi: 10.1016/j.cattod.2006.02.077

    41. [41]

      Chinchen, G. C.; Denny, P. J.; Parker, D. G.; Spencer, M. S.; Whan, D. A. Appl. Catal. 1987, 30, 333. doi: 10.1016/S0166-9834(00)84123-8  doi: 10.1016/S0166-9834(00)84123-8

    42. [42]

      Chinchen, G. C.; Waugh, K. C. J. Catal. 1986, 97, 280. doi: 10.1016/0021-9517(86)90063-1  doi: 10.1016/0021-9517(86)90063-1

    43. [43]

      Chinchen, G. C.; Waugh, K. C.; Whan, D. A. Appl. Catal. 1986, 25, 101. doi: 10.1016/S0166-9834(00)81226-9  doi: 10.1016/S0166-9834(00)81226-9

    44. [44]

      Sun, J. T.; Metcalfe, I. S.; Sahibzada, M. Ind. Eng. Chem. Res. 1999, 38, 3868. doi: 10.1021/ie990078s  doi: 10.1021/ie990078s

  • 加载中
    1. [1]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    2. [2]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    5. [5]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    6. [6]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    7. [7]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    10. [10]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    11. [11]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    14. [14]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    17. [17]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    20. [20]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

Metrics
  • PDF Downloads(26)
  • Abstract views(792)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return