Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction
- Corresponding author: Han Na, hanna@suda.edu.cn Li Yanguang, yanguang@suda.edu.cn
Citation: Zhou Yuan, Han Na, Li Yanguang. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 200104. doi: 10.3866/PKU.WHXB202001041
Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D. C. Nature 2013, 500, 287. doi: 10.1038/nature12350
doi: 10.1038/nature12350
Creutzig, F.; Agoston, P.; Minx, J. C.; Canadell, J. G.; Andrew, R. M.; Le Quéré, C.; Peters, G. P.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Nat. Clim. Change 2016, 6, 1054. doi: 10.1038/nclimate3169
doi: 10.1038/nclimate3169
Davis, S. J.; Caldeira, K. Proc. Natl. Acad. Sci. 2010, 107, 5687. doi: 10.1073/pnas.0906974107
doi: 10.1073/pnas.0906974107
Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/c3cs60323g
doi: 10.1039/c3cs60323g
Yang, Y.; Zhang, Y.; Hu, J.; Wan, L. Acta Phys. -Chim. Sin. 2019, 36, 1906085.
doi: 10.3866/PKU.WHXB201906085
Mac Dowell, N.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243. doi: 10.1038/nclimate3231
doi: 10.1038/nclimate3231
Keith, D. W. Science 2009, 325, 1654. doi: 10.1126/science.1175680
doi: 10.1126/science.1175680
Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Nat. Catal. 2018, 1, 32. doi: 10.1038/s41929-017-0005-1
doi: 10.1038/s41929-017-0005-1
Whipple, D. T.; Kenis, P. J. J. Phys. Chem. C 2010, 1, 3451. doi: 10.1021/jz1012627
doi: 10.1021/jz1012627
Bai, X.; Chen, W.; Wang, B.; Feng, G.; Wei, W.; Jiao, Z.; Sun, Y. Acta Phys. -Chim. Sin. 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131
Costentin, C.; Robert, M.; Savéant, J. M. Chem. Soc. Rev. 2013, 42, 2423. doi: 10.1039/c2cs35360a
doi: 10.1039/c2cs35360a
Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194. doi: 10.1002/advs.201700194
doi: 10.1002/advs.201700194
Han, N.; Ding, P.; He, L.; Li, Y.; Li, Y. Adv. Energy Mater. 2019, 1902338. doi: 10.1002/aenm.201902338
doi: 10.1002/aenm.201902338
Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. J. Phys. Chem. Lett. 2015, 6, 4073. doi: 10.1021/acs.jpclett.5b01559
doi: 10.1021/acs.jpclett.5b01559
Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. 2009, 38, 89. doi: 10.1039/B804323J
doi: 10.1039/B804323J
Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766
doi: 10.1002/adma.201504766
Zhang, Y.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. ACS Catal. 2014, 4, 3742. doi: 10.1021/cs5012298
doi: 10.1021/cs5012298
Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Springer: New York, 2008; p. 89.
Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94)85172-7
doi: 10.1016/0013-4686(94)85172-7
Yang, H.; Han, N.; Deng, J.; Wu, J.; Wang, Y.; Hu, Y.; Ding, P.; Li, Y.; Li, Y.; Lu, J. Adv. Energy Mater. 2018, 8, 1801536. doi: 10.1002/aenm.201801536
doi: 10.1002/aenm.201801536
Jia, L.; Yang, H.; Deng, J.; Chen, J.; Zhou, Y.; Ding, P.; Li, L.; Han, N.; Li, Y. Chinese J. Chem. 2019, 37, 497. doi: 10.1002/cjoc.201900010
doi: 10.1002/cjoc.201900010
Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y. Nat. Commun. 2018, 9, 1320. doi: 10.1038/s41467-018-03712-z
doi: 10.1038/s41467-018-03712-z
Han, N.; Wang, Y.; Deng, J.; Zhou, J.; Wu, Y.; Yang, H.; Ding, P.; Li, Y. J. Mater. Chem. A 2019, 7, 1267. doi: 10.1039/c8ta10959a
doi: 10.1039/c8ta10959a
Gong, Q.; Ding, P.; Xu, M.; Zhu, X.; Wang, M.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. Nat. Commun. 2019, 10, 2807. doi: 10.1038/s41467-019-10819-4
doi: 10.1038/s41467-019-10819-4
Ding, P.; Hu, Y.; Deng, J.; Chen, J.; Zha, C.; Yang, H.; Han, N.; Gong, Q.; Li, L.; Wang, T. Mater. Today Chem. 2019, 11, 80. doi: 10.1016/j.mtchem.2018.10.009
doi: 10.1016/j.mtchem.2018.10.009
Yang, H.; Huang, Y.; Deng, J.; Wu, Y.; Han, N.; Zha, C.; Li, L.; Li, Y. J. Energy Chem. 2019, 37, 93. doi: 10.1016/j.jechem.2018.12.004
doi: 10.1016/j.jechem.2018.12.004
Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514
doi: 10.1021/acs.iecr.7b03514
Zhang, H.; Jin, M.; Xiong, Y.; Lim, B.; Xia, Y. Acc. Chem. Res. 2012, 46, 1783. doi: 10.1021/ar300209w
doi: 10.1021/ar300209w
Chen, A.; Ostrom, C. Chem. Rev. 2015, 115, 11999. doi: 10.1021/acs.chemrev.5b00324
doi: 10.1021/acs.chemrev.5b00324
Gao, D.; Zhou, H.; Cai, F.; Wang, D.; Hu, Y.; Jiang, B.; Cai, W. B.; Chen, X.; Si, R.; Yang, F. Nano Res. 2017, 10, 2181. doi: 10.1007/s12274-017-1514-6
doi: 10.1007/s12274-017-1514-6
Sheng, W.; Kattel, S.; Yao, S.; Yan, B.; Liang, Z.; Hawxhurst, C. J.; Wu, Q.; Chen, J. G. Energy Environ. Sci. 2017, 10, 1180. doi: 10.1039/c7ee00071e
doi: 10.1039/c7ee00071e
Ohkawa, K.; Hashimoto, K.; Fujishima, A.; Noguchi, Y.; Nakayama, S. J. Electroanal. Chem. 1993, 345, 445. doi: 10.1016/0022-0728(93)80495-4
doi: 10.1016/0022-0728(93)80495-4
Stalder, C. J.; Chao, S.; Wrighton, M. S. J. Am. Chem. Soc. 1984, 106, 3673. doi: 10.1021/ja00324a046
doi: 10.1021/ja00324a046
Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; et al. Chem 2017, 3, 652. doi: 10.1016/j.chempr.2017.08.002
doi: 10.1016/j.chempr.2017.08.002
Zheng, T.; Jiang, K.; Wang, H. Adv. Mater. 2018, 30, 1802066. doi: 10.1002/adma.201802066
doi: 10.1002/adma.201802066
Koper, M. T. Nanoscale 2011, 3, 2054. doi: 10.1039/C0NR00857E
doi: 10.1039/C0NR00857E
Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. J. Am. Chem. Soc. 2015, 137, 4288. doi: 10.1021/jacs.5b00046
doi: 10.1021/jacs.5b00046
Rahaman, M.; Dutta, A.; Broekmann, P. ChemSusChem 2017, 10, 1733. doi: 10.1002/cssc.201601778
doi: 10.1002/cssc.201601778
Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Acc. Chem. Res. 2013, 46, 1867. doi: 10.1021/ar3002238
doi: 10.1021/ar3002238
Klinkova, A.; De Luna, P.; Dinh, C. T.; Voznyy, O.; Larin, E. M.; Kumacheva, E.; Sargent, E. H. ACS Catal. 2016, 6, 8115. doi: 10.1021/acscatal.6b01719
doi: 10.1021/acscatal.6b01719
Zhu, W.; Kattel, S.; Jiao, F.; Chen, J. G. Adv. Energy Mater. 2019, 9, 1802840. doi: 10.1002/aenm.201802840
doi: 10.1002/aenm.201802840
Huang, H.; Jia, H.; Liu, Z.; Gao, P.; Zhao, J.; Luo, Z.; Yang, J.; Zeng, J. Angew. Chem. Int. Ed. 2017, 56, 3594. doi: 10.1002/anie.201612617
doi: 10.1002/anie.201612617
Wang, Y.; Cao, L.; Libretto, N. J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.; Zong, H. J. Am. Chem. Soc. 2019, 141, 16635. doi: 10.1021/jacs.9b05766
doi: 10.1021/jacs.9b05766
Lu, L.; Sun, X.; Ma, J.; Yang, D.; Wu, H.; Zhang, B.; Zhang, J.; Han, B. Angew. Chem. Int. Ed. 2018, 57, 14149. doi: 10.1002/anie.201808964
doi: 10.1002/anie.201808964
Zhu, W.; Zhang, L.; Yang, P.; Chang, X.; Dong, H.; Li, A.; Hu, C.; Huang, Z.; Zhao, Z. J.; Gong, J. Small 2018, 14, 1703314. doi: 10.1002/smll.201703314
doi: 10.1002/smll.201703314
Bai, X.; Chen, W.; Zhao, C.; Li, S.; Song, Y.; Ge, R.; Wei, W.; Sun, Y. Angew. Chem. Int. Ed. 2017, 56, 12219. doi: 10.1002/anie.201707098
doi: 10.1002/anie.201707098
Yin, Z.; Gao, D.; Yao, S.; Zhao, B.; Cai, F.; Lin, L.; Tang, P.; Zhai, P.; Wang, G.; Ma, D. Nano Energy 2016, 27, 35. doi: 10.1016/j.nanoen.2016.06.035
doi: 10.1016/j.nanoen.2016.06.035
Kang, Y.; Snyder, J.; Chi, M.; Li, D.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2014, 14, 6361. doi: 10.1021/nl5028205
doi: 10.1021/nl5028205
Jiang, R.; Tung, S.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.; Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260. doi: 10.1016/j.ensm.2017.11.005
doi: 10.1016/j.ensm.2017.11.005
Yuan, X.; Zhang, L.; Li, L.; Dong, H.; Chen, S.; Zhu, W.; Hu, C.; Deng, W.; Zhao, Z. J.; Gong, J. J. Am. Chem. Soc. 2019, 141, 4791. doi: 10.1021/jacs.8b11771
doi: 10.1021/jacs.8b11771
Zhu, S.; Qin, X.; Wang, Q.; Li, T.; Tao, R.; Gu, M.; Shao, M. J. Mater. Chem. A 2019, doi: 10.1039/c9ta05325e
doi: 10.1039/c9ta05325e
Hou, Y.; Erni, R.; Widmer, R.; Rahaman, M.; Guo, H.; Fasel, R.; Moreno-García, P.; Zhang, Y.; Broekmann, P. ChemElectroChem2019, 6, 3189. doi: 10.1002/celc.201900752
doi: 10.1002/celc.201900752
Wang, J.; Kattel, S.; Hawxhurst, C. J.; Lee, J. H.; Tackett, B. M.; Chang, K.; Rui, N.; Liu, C. J.; Chen, J. G. Angew. Chem. Int. Ed. 2015, 58, 6271. doi: 10.1002/anie.201900781
doi: 10.1002/anie.201900781
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067