Citation: Zhou Yuan, Han Na, Li Yanguang. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 200104. doi: 10.3866/PKU.WHXB202001041 shu

Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction

  • Corresponding author: Han Na, hanna@suda.edu.cn Li Yanguang, yanguang@suda.edu.cn
  • Received Date: 19 January 2020
    Revised Date: 4 March 2020
    Accepted Date: 9 March 2020
    Available Online: 16 March 2020

    Fund Project: The project was supported by the Ministry of Science and Technology of China (2017YFA0204800) and the National Natural Science Foundation of China (2190020225)the National Natural Science Foundation of China 2190020225The project was supported by the Ministry of Science and Technology of China 2017YFA0204800

  • The process that converts CO2 to value-added chemical fuels or industrial feedstocks is called the electrochemical carbon dioxide reduction reaction (CO2RR). When used in combination with renewable energy resources such as solar or wind, it represents one of the most promising strategies for transforming the intermittent renewable energy to chemical energy. However, because CO2 molecules are thermodynamically stable, their electrochemical reduction is kinetically challenging. CO2RR also has several different reaction pathways with a large spectrum of reduction products, making its selectivity problematic. It often requires the assistance of highly effective electrocatalysts with excellent activity, selectivity, and durability. Recently, palladium (Pd)-based nanomaterials have attracted considerable attention for CO2RR. They can enable the selective production of formic acid or formate (HCOOH or HCOO-) at near the theoretical equilibrium, as well as CO at a more negative potential. Unfortunately, the strong surface affinity of Pd toward CO often results in the deactivation of catalytic activity in the electrocatalytic process, in particular for formate production. Over recent years, extensive research effort has been invested into enhancing the electrochemical performances of Pd-based electrocatalysts. By controlling the size, morphology, and crystal surfaces of Pd nanocrystals, the distribution and structure of the atoms on the catalyst surface can be carefully engineered. For example, reducing the size of Pd nanoparticles has been found to significantly enhance the reaction activity and selectivity for the production of both CO and formate. The high-index crystal surfaces of Pd nanocrystals with low coordination numbers also generally show higher electrocatalytic activities. The design of Pd-based alloy nanostructures with tunable electronic structures represents another effective way to improve the electrochemical performance. Incorporation of non-precious metals can not only reduce the cost, but also effectively weaken the surface binding of CO. In addition, dispersing Pd nanoparticles on high-surface-area supports can increase the surface exposure of active sites and facilitate the formation of the electrochemical active phase. In this perspective, we provide an overview of the recent progress on nanostructured Pd-based catalysts for electrochemical CO2 reduction. First, we briefly introduce the CO2RR fundamentals as well as the reaction mechanism on Pd-based nanostructures. We then review a number of strategies to promote CO2RR performance, including utilizing the size effect, morphology effect, alloy effect, core-shell effect, and support effect. Finally, we conclude with a perspective on the future prospects of Pd-based CO2RR electrocatalysts, providing readers a snapshot of this rapidly evolving field.
  • 加载中
    1. [1]

      Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D. C. Nature 2013, 500, 287. doi: 10.1038/nature12350  doi: 10.1038/nature12350

    2. [2]

      Creutzig, F.; Agoston, P.; Minx, J. C.; Canadell, J. G.; Andrew, R. M.; Le Quéré, C.; Peters, G. P.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Nat. Clim. Change 2016, 6, 1054. doi: 10.1038/nclimate3169  doi: 10.1038/nclimate3169

    3. [3]

      Davis, S. J.; Caldeira, K. Proc. Natl. Acad. Sci. 2010, 107, 5687. doi: 10.1073/pnas.0906974107  doi: 10.1073/pnas.0906974107

    4. [4]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/c3cs60323g  doi: 10.1039/c3cs60323g

    5. [5]

      Yang, Y.; Zhang, Y.; Hu, J.; Wan, L. Acta Phys. -Chim. Sin. 2019, 36, 1906085.  doi: 10.3866/PKU.WHXB201906085

    6. [6]

      Mac Dowell, N.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243. doi: 10.1038/nclimate3231  doi: 10.1038/nclimate3231

    7. [7]

      Keith, D. W. Science 2009, 325, 1654. doi: 10.1126/science.1175680  doi: 10.1126/science.1175680

    8. [8]

      Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Nat. Catal. 2018, 1, 32. doi: 10.1038/s41929-017-0005-1  doi: 10.1038/s41929-017-0005-1

    9. [9]

      Whipple, D. T.; Kenis, P. J. J. Phys. Chem. C 2010, 1, 3451. doi: 10.1021/jz1012627  doi: 10.1021/jz1012627

    10. [10]

      Bai, X.; Chen, W.; Wang, B.; Feng, G.; Wei, W.; Jiao, Z.; Sun, Y. Acta Phys. -Chim. Sin. 2017, 33, 2388.  doi: 10.3866/PKU.WHXB201706131

    11. [11]

      Costentin, C.; Robert, M.; Savéant, J. M. Chem. Soc. Rev. 2013, 42, 2423. doi: 10.1039/c2cs35360a  doi: 10.1039/c2cs35360a

    12. [12]

      Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194. doi: 10.1002/advs.201700194  doi: 10.1002/advs.201700194

    13. [13]

      Han, N.; Ding, P.; He, L.; Li, Y.; Li, Y. Adv. Energy Mater. 2019, 1902338. doi: 10.1002/aenm.201902338  doi: 10.1002/aenm.201902338

    14. [14]

      Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. J. Phys. Chem. Lett. 2015, 6, 4073. doi: 10.1021/acs.jpclett.5b01559  doi: 10.1021/acs.jpclett.5b01559

    15. [15]

      Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. 2009, 38, 89. doi: 10.1039/B804323J  doi: 10.1039/B804323J

    16. [16]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    17. [17]

      Zhang, Y.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. ACS Catal. 2014, 4, 3742. doi: 10.1021/cs5012298  doi: 10.1021/cs5012298

    18. [18]

      Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Springer: New York, 2008; p. 89.

    19. [19]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94)85172-7  doi: 10.1016/0013-4686(94)85172-7

    20. [20]

      Yang, H.; Han, N.; Deng, J.; Wu, J.; Wang, Y.; Hu, Y.; Ding, P.; Li, Y.; Li, Y.; Lu, J. Adv. Energy Mater. 2018, 8, 1801536. doi: 10.1002/aenm.201801536  doi: 10.1002/aenm.201801536

    21. [21]

      Jia, L.; Yang, H.; Deng, J.; Chen, J.; Zhou, Y.; Ding, P.; Li, L.; Han, N.; Li, Y. Chinese J. Chem. 2019, 37, 497. doi: 10.1002/cjoc.201900010  doi: 10.1002/cjoc.201900010

    22. [22]

      Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y. Nat. Commun. 2018, 9, 1320. doi: 10.1038/s41467-018-03712-z  doi: 10.1038/s41467-018-03712-z

    23. [23]

      Han, N.; Wang, Y.; Deng, J.; Zhou, J.; Wu, Y.; Yang, H.; Ding, P.; Li, Y. J. Mater. Chem. A 2019, 7, 1267. doi: 10.1039/c8ta10959a  doi: 10.1039/c8ta10959a

    24. [24]

      Gong, Q.; Ding, P.; Xu, M.; Zhu, X.; Wang, M.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. Nat. Commun. 2019, 10, 2807. doi: 10.1038/s41467-019-10819-4  doi: 10.1038/s41467-019-10819-4

    25. [25]

      Ding, P.; Hu, Y.; Deng, J.; Chen, J.; Zha, C.; Yang, H.; Han, N.; Gong, Q.; Li, L.; Wang, T. Mater. Today Chem. 2019, 11, 80. doi: 10.1016/j.mtchem.2018.10.009  doi: 10.1016/j.mtchem.2018.10.009

    26. [26]

      Yang, H.; Huang, Y.; Deng, J.; Wu, Y.; Han, N.; Zha, C.; Li, L.; Li, Y. J. Energy Chem. 2019, 37, 93. doi: 10.1016/j.jechem.2018.12.004  doi: 10.1016/j.jechem.2018.12.004

    27. [27]

      Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514  doi: 10.1021/acs.iecr.7b03514

    28. [28]

      Zhang, H.; Jin, M.; Xiong, Y.; Lim, B.; Xia, Y. Acc. Chem. Res. 2012, 46, 1783. doi: 10.1021/ar300209w  doi: 10.1021/ar300209w

    29. [29]

      Chen, A.; Ostrom, C. Chem. Rev. 2015, 115, 11999. doi: 10.1021/acs.chemrev.5b00324  doi: 10.1021/acs.chemrev.5b00324

    30. [30]

      Gao, D.; Zhou, H.; Cai, F.; Wang, D.; Hu, Y.; Jiang, B.; Cai, W. B.; Chen, X.; Si, R.; Yang, F. Nano Res. 2017, 10, 2181. doi: 10.1007/s12274-017-1514-6  doi: 10.1007/s12274-017-1514-6

    31. [31]

      Sheng, W.; Kattel, S.; Yao, S.; Yan, B.; Liang, Z.; Hawxhurst, C. J.; Wu, Q.; Chen, J. G. Energy Environ. Sci. 2017, 10, 1180. doi: 10.1039/c7ee00071e  doi: 10.1039/c7ee00071e

    32. [32]

      Ohkawa, K.; Hashimoto, K.; Fujishima, A.; Noguchi, Y.; Nakayama, S. J. Electroanal. Chem. 1993, 345, 445. doi: 10.1016/0022-0728(93)80495-4  doi: 10.1016/0022-0728(93)80495-4

    33. [33]

      Stalder, C. J.; Chao, S.; Wrighton, M. S. J. Am. Chem. Soc. 1984, 106, 3673. doi: 10.1021/ja00324a046  doi: 10.1021/ja00324a046

    34. [34]

      Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; et al. Chem 2017, 3, 652. doi: 10.1016/j.chempr.2017.08.002  doi: 10.1016/j.chempr.2017.08.002

    35. [35]

      Zheng, T.; Jiang, K.; Wang, H. Adv. Mater. 2018, 30, 1802066. doi: 10.1002/adma.201802066  doi: 10.1002/adma.201802066

    36. [36]

      Koper, M. T. Nanoscale 2011, 3, 2054. doi: 10.1039/C0NR00857E  doi: 10.1039/C0NR00857E

    37. [37]

      Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. J. Am. Chem. Soc. 2015, 137, 4288. doi: 10.1021/jacs.5b00046  doi: 10.1021/jacs.5b00046

    38. [38]

      Rahaman, M.; Dutta, A.; Broekmann, P. ChemSusChem 2017, 10, 1733. doi: 10.1002/cssc.201601778  doi: 10.1002/cssc.201601778

    39. [39]

      Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Acc. Chem. Res. 2013, 46, 1867. doi: 10.1021/ar3002238  doi: 10.1021/ar3002238

    40. [40]

      Klinkova, A.; De Luna, P.; Dinh, C. T.; Voznyy, O.; Larin, E. M.; Kumacheva, E.; Sargent, E. H. ACS Catal. 2016, 6, 8115. doi: 10.1021/acscatal.6b01719  doi: 10.1021/acscatal.6b01719

    41. [41]

      Zhu, W.; Kattel, S.; Jiao, F.; Chen, J. G. Adv. Energy Mater. 2019, 9, 1802840. doi: 10.1002/aenm.201802840  doi: 10.1002/aenm.201802840

    42. [42]

      Huang, H.; Jia, H.; Liu, Z.; Gao, P.; Zhao, J.; Luo, Z.; Yang, J.; Zeng, J. Angew. Chem. Int. Ed. 2017, 56, 3594. doi: 10.1002/anie.201612617  doi: 10.1002/anie.201612617

    43. [43]

      Wang, Y.; Cao, L.; Libretto, N. J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.; Zong, H. J. Am. Chem. Soc. 2019, 141, 16635. doi: 10.1021/jacs.9b05766  doi: 10.1021/jacs.9b05766

    44. [44]

      Lu, L.; Sun, X.; Ma, J.; Yang, D.; Wu, H.; Zhang, B.; Zhang, J.; Han, B. Angew. Chem. Int. Ed. 2018, 57, 14149. doi: 10.1002/anie.201808964  doi: 10.1002/anie.201808964

    45. [45]

      Zhu, W.; Zhang, L.; Yang, P.; Chang, X.; Dong, H.; Li, A.; Hu, C.; Huang, Z.; Zhao, Z. J.; Gong, J. Small 2018, 14, 1703314. doi: 10.1002/smll.201703314  doi: 10.1002/smll.201703314

    46. [46]

      Bai, X.; Chen, W.; Zhao, C.; Li, S.; Song, Y.; Ge, R.; Wei, W.; Sun, Y. Angew. Chem. Int. Ed. 2017, 56, 12219. doi: 10.1002/anie.201707098  doi: 10.1002/anie.201707098

    47. [47]

      Yin, Z.; Gao, D.; Yao, S.; Zhao, B.; Cai, F.; Lin, L.; Tang, P.; Zhai, P.; Wang, G.; Ma, D. Nano Energy 2016, 27, 35. doi: 10.1016/j.nanoen.2016.06.035  doi: 10.1016/j.nanoen.2016.06.035

    48. [48]

      Kang, Y.; Snyder, J.; Chi, M.; Li, D.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2014, 14, 6361. doi: 10.1021/nl5028205  doi: 10.1021/nl5028205

    49. [49]

      Jiang, R.; Tung, S.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.; Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260. doi: 10.1016/j.ensm.2017.11.005  doi: 10.1016/j.ensm.2017.11.005

    50. [50]

      Yuan, X.; Zhang, L.; Li, L.; Dong, H.; Chen, S.; Zhu, W.; Hu, C.; Deng, W.; Zhao, Z. J.; Gong, J. J. Am. Chem. Soc. 2019, 141, 4791. doi: 10.1021/jacs.8b11771  doi: 10.1021/jacs.8b11771

    51. [51]

      Zhu, S.; Qin, X.; Wang, Q.; Li, T.; Tao, R.; Gu, M.; Shao, M. J. Mater. Chem. A 2019, doi: 10.1039/c9ta05325e  doi: 10.1039/c9ta05325e

    52. [52]

      Hou, Y.; Erni, R.; Widmer, R.; Rahaman, M.; Guo, H.; Fasel, R.; Moreno-García, P.; Zhang, Y.; Broekmann, P. ChemElectroChem2019, 6, 3189. doi: 10.1002/celc.201900752  doi: 10.1002/celc.201900752

    53. [53]

      Wang, J.; Kattel, S.; Hawxhurst, C. J.; Lee, J. H.; Tackett, B. M.; Chang, K.; Rui, N.; Liu, C. J.; Chen, J. G. Angew. Chem. Int. Ed. 2015, 58, 6271. doi: 10.1002/anie.201900781  doi: 10.1002/anie.201900781

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(28)
  • Abstract views(772)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return