Citation: Ping An, Yu Fu, Danlei Wei, Yanglong Guo, Wangcheng Zhan, Jinshui Zhang. Hollow Nitrogen-Rich Carbon Nanoworms with High Activity for Metal-Free Selective Aerobic Oxidation of Benzyl Alcohol[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200102. doi: 10.3866/PKU.WHXB202001025 shu

Hollow Nitrogen-Rich Carbon Nanoworms with High Activity for Metal-Free Selective Aerobic Oxidation of Benzyl Alcohol

  • Corresponding author: Wangcheng Zhan, jinshui.zhang@fzu.edu.cn Jinshui Zhang, zhanwc@ecust.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 7 January 2020
    Revised Date: 10 February 2020
    Available Online: 28 February 2020

    Fund Project: the National Natural Science Foundation of China 21972022the National Natural Science Foundation of China U1805255the 111 Project D16008Natural Science Foundation of Fujian Province, China 2018J01681the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment SKLPEE-2017A03

  • Carbon materials have become one of the research hotspots in the field of catalysis as a typical representative of non-metallic catalytic materials. Herein, a facile synthetic strategy is developed to fabricate a series of hollow carbon nanoworms (h-NCNWs) that contain nitrogen up to 9.83 wt% by employing graphitic carbon nitride (g-C3N4) as the sacrificing template and solid nitrogen source. The h-NCNWs catalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric (TG), Raman spectra, and X-ray photoelectron spectroscopies (XPS). The catalytic activities of the h-NCNWs catalysts for selective oxidation of benzyl alcohol with O2 were also evaluated. The characterization results revealed that the h-NCNWs catalysts displayed a unique hollow worm-like nanostructure with turbostratic carbon shells. The nitrogen content and shell thickness can be tuned by varying the relative ratio of resorcinol to g-C3N4 during the preparation process. Furthermore, nitrogen is incorporated to the carbon network in the form of graphite (predominantly) and pyridine, which is critical for the enhancement of the catalytic activity of carbon catalysts for the selective oxidation of benzyl alcohol. At a reaction temperature of 120 ℃, a 24.9% conversion of benzyl alcohol with > 99% selectivity to benzaldehyde can be achieved on the h-NCNWs catalyst prepared with a mass ratio of resorcinol to g-C3N4 of 0.5. However, the catalytic activities of the h-NCNWs catalysts were dependent on the amount of N dopants, in particular graphitic nitrogen species. The conversion of benzyl alcohol markedly decreased to 13.1% on the h-NCNWs catalyst prepared with a mass ratio of resorcinol to g-C3N4 of 1.5. Moreover, the h-NCNWs catalyst showed excellent stability during the reaction process. The conversion of benzyl alcohol and the high selectivity to aldehyde can be kept within five catalytic runs over the h-NCNWs0.5 catalyst. These results indicate that rationally designed carbon materials have great potential as highly efficient heterogeneous catalysts for oxidation reactions.
  • 加载中
    1. [1]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132. doi: 10.1021/cr900070d  doi: 10.1021/cr900070d

    2. [2]

      Dresselhaus, M. S. ACS Nano 2010, 4, 4344. doi: 10.1021/nn101845f  doi: 10.1021/nn101845f

    3. [3]

      Dreyer, D. R.; Bielawski, C. W. Chem. Sci. 2011, 2, 1233. doi: 10.1039/C1SC00035G  doi: 10.1039/C1SC00035G

    4. [4]

      Su, D. S.; Perathoner, S.; Centi, G. Chem. Rev. 2013, 113, 5782. doi: 10.1021/cr300367d  doi: 10.1021/cr300367d

    5. [5]

      Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Rev. 2014, 114, 6179. doi: 10.1021/cr4007347  doi: 10.1021/cr4007347

    6. [6]

      Zhang, S. C.; Zhang, N.; Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 1907021.  doi: 10.3866/PKU.WHXB201907021

    7. [7]

      Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Nat. Commun. 2014, 5, 5291. doi: 10.1038/ncomms6291  doi: 10.1038/ncomms6291

    8. [8]

      Trandafir, M. M.; Florea, M.; Neaţu, F.; Primo, A.; Parvulescu, V. I.; García H. ChemSusChem 2016, 9, 1565. doi: 10.1002/cssc.201600197  doi: 10.1002/cssc.201600197

    9. [9]

      Su, C. L.; Acik, M.; Takai, K.; Lu, J.; Hao, S. J.; Zheng, Y.; Wu, P. P.; Bao, Q. L.; Enoki, T.; Chabal, Y. J.; et al. Nat. Commun. 2012, 3, 1298. doi: 10.1038/ncomms2315  doi: 10.1038/ncomms2315

    10. [10]

      Sedrpoushan, A.; Heidari, M.; Akhavan, O. Chin. J. Catal. 2017, 38, 745. doi: 10.1016/S1872-2067(17)62776-1  doi: 10.1016/S1872-2067(17)62776-1

    11. [11]

      Li, X. Y.; Pan, X. L.; Yu, L.; Ren, P. J.; Wu, X.; Sun, L. T.; Jiao, F.; Bao, X. H. Nat. Commun. 2014, 5, 3688. doi: 10.1038/ncomms4688  doi: 10.1038/ncomms4688

    12. [12]

      Tang, P.; Hu, G.; Li, M. Z.; Ma, D. ACS Catal. 2016, 6, 6948. doi: 10.1021/acscatal.6b01668  doi: 10.1021/acscatal.6b01668

    13. [13]

      Wang, D. W.; Su, D. S. Energy Environ. Sci. 2014, 7, 576. doi: 10.1039/C3EE43463J  doi: 10.1039/C3EE43463J

    14. [14]

      Hu, C. G.; Dai, L. M. Angew. Chem. Int. Ed. 2016, 55, 11736. doi: 10.1002/anie.201509982  doi: 10.1002/anie.201509982

    15. [15]

      Tang, C.; Zhang, Q. Adv. Mater. 2017, 29, 1604103. doi: 10.1002/adma.201604103  doi: 10.1002/adma.201604103

    16. [16]

      Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y. G.; Qiao, S. Z. Small 2012, 8, 3550. doi: 10.1002/smll.201200861  doi: 10.1002/smll.201200861

    17. [17]

      Liu, Z. W.; Peng, F.; Wang, H. J.; Yu, H.; Zheng, W. X.; Yang, J. A. Angew. Chem. Int. Ed. 2011, 50, 3257. doi: 10.1002/anie.201006768  doi: 10.1002/anie.201006768

    18. [18]

      Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Angew. Chem. Int. Ed. 2011, 50, 7132. doi: 10.1002/anie.201101287  doi: 10.1002/anie.201101287

    19. [19]

      Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Science 2009, 323, 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    20. [20]

      Tang, P.; Gao, Y. J.; Yang, J. H.; Li, W. J.; Zhao, H. B.; Ma, D. Chin. J. Catal. 2014, 35, 922. doi: 10.1016/S1872-2067(14)60150-9  doi: 10.1016/S1872-2067(14)60150-9

    21. [21]

      Zhang, J. S.; Schott, J. A.; Li, Y. C.; Zhan, W. C.; Mahurin, S. M.; Nelson, K.; Sun, X. G.; Paranthaman, M. P.; Dai, S. Adv. Mater. 2017, 29, 1603797. doi: 10.1002/adma.201603797  doi: 10.1002/adma.201603797

    22. [22]

      Lu, A. H.; Li, W. C.; Hao, G. P.; Spliethoff, B.; Bongard, H. J.; Schaack, B. B.; Schüth, F. Angew. Chem. Int. Ed. 2010, 49, 1615. doi: 10.1002/anie.200906445  doi: 10.1002/anie.200906445

    23. [23]

      Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q.; Maier, J.; Müllen, K. Adv. Mater. 2010, 22, 838. doi: 10.1002/adma.200902795  doi: 10.1002/adma.200902795

    24. [24]

      Wang, Y.; Su, F.; Lee, J. Y.; Zhao, X. S. Chem. Mater. 2006, 18, 1347. doi:10.1021/cm052219o  doi: 10.1021/cm052219o

    25. [25]

      Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schüth, F. Nat. Mater. 2014, 13, 293. doi: 10.1038/nmat3872  doi: 10.1038/nmat3872

    26. [26]

      Titirici, M. M.; Antonietti, M. Chem. Soc. Rev. 2010, 39, 103. doi: 10.1039/B819318P  doi: 10.1039/B819318P

    27. [27]

      Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Angew. Chem. Int. Ed. 2011, 50, 6799. doi: 10.1002/anie.201102070  doi: 10.1002/anie.201102070

    28. [28]

      White, R. J.; Tauer, K.; Antonietti, M.; Titirici, M. M. J. Am. Chem. Soc. 2010, 132, 17360. doi: 10.1021/ja107697s  doi: 10.1021/ja107697s

    29. [29]

      Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    30. [30]

      Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    31. [31]

      Wang, Y.Q.; Sheng, S. H. Acta Phys. -Chim. Sin. 2020, 36, 1905080.  doi: 10.3866/PKU.WHXB201905080

    32. [32]

      Groen, J. C.; Peffer, L. A. A.; Pérez-Ramírez J. Microporous Mesoporous Mat. 2003, 60, 1. doi: 10.1016/S1387-1811(03)00339-1  doi: 10.1016/S1387-1811(03)00339-1

    33. [33]

      Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. J. Am. Chem. Soc. 2009, 131, 1680. doi: 10.1021/ja809307s  doi: 10.1021/ja809307s

    34. [34]

      Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2006, 45, 4467. doi: 10.1002/anie.200600412  doi: 10.1002/anie.200600412

    35. [35]

      Ghosh, K.; Kumar, M.; Maruyama, T.; Ando, Y. Carbon 2009, 47, 1565. doi: 10.1016/j.carbon.2009.02.007  doi: 10.1016/j.carbon.2009.02.007

    36. [36]

      Wang, Z. J.; Jia, R. R.; Zheng, J. F.; Zhao, J. H.; Li, L.; Song, J. L.; Zhu, Z. P. ACS Nano 2011, 5, 1677. doi: 10.1021/nn1030127  doi: 10.1021/nn1030127

    37. [37]

      Chen, Y. Z.; Wang, Z.; Mao, S. J.; Wang, Y. Chin. J. Catal. 2019, 40, 917. doi: 10.1016/S1872-2067(19)63342-5  doi: 10.1016/S1872-2067(19)63342-5

    38. [38]

      Watanabe, H.; Asano, S.; Fujita, S. I.; Yoshida, H.; Arai, M. ACS Catal. 2015, 5, 2886. doi: 10.1021/acscatal.5b00375  doi: 10.1021/acscatal.5b00375

    39. [39]

      Zhang, P. F.; Deng, J.; Mao, H. R.; Li, H. R.; Wang, Y. Chin. J. Catal. 2015, 36, 1580. doi: 10.1016/S1872-2067(15)60871-3  doi: 10.1016/S1872-2067(15)60871-3

    40. [40]

      Gong, Y. T.; Li, M. M.; Li, H. R.; Wang, R. Green Chem. 2015, 17, 715. doi: 10.1039/C4GC01847H  doi: 10.1039/C4GC01847H

    41. [41]

      Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Nat. Commun. 2013, 4, 1593. doi: 10.1038/ncomms2586  doi: 10.1038/ncomms2586

    42. [42]

      Li, M. M.; Xu, F.; Li, H. R.; Wang, Y. Catal. Sci. Technol. 2016, 6, 3670. doi: 10.1039/C6CY00544F  doi: 10.1039/C6CY00544F

  • 加载中
    1. [1]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    2. [2]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    3. [3]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    4. [4]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    5. [5]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    8. [8]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    9. [9]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    10. [10]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    11. [11]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    12. [12]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    13. [13]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    14. [14]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    15. [15]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    16. [16]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    17. [17]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    18. [18]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    19. [19]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    20. [20]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

Metrics
  • PDF Downloads(9)
  • Abstract views(307)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return