Citation: Fei Wang, Zhaolong Chen, Jiawei Yang, Hao Li, Jingyuan Shan, Feng Zhang, Baolu Guan, Zhongfan Liu. Heating Characteristics of Graphene Glass Transparent Films[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200102. doi: 10.3866/PKU.WHXB202001024 shu

Heating Characteristics of Graphene Glass Transparent Films

  • Corresponding author: Baolu Guan, gbl@bjut.edu.cn
  • Received Date: 6 January 2020
    Revised Date: 15 February 2020
    Accepted Date: 25 February 2020
    Available Online: 6 March 2020

    Fund Project: the National Natural Science Foundation of China 61775007the National Natural Science Foundation of China 60908012the National Natural Science Foundation of China 61575008the Natural Science Foundation of Beijing, China 4172011the Beijing Municipal Commission of Education, China 040000546319525the Beijing Municipal Commission of Education, China 040000546618006

  • Graphene has become a research focus in recent years owing to its excellent characteristics, and glass is a commonly used material with high transparency and low cost. Graphene glass combines the excellent properties of both graphene and glass; graphene glass has not only high thermal conductivity, high electrical conductivity, and good surface hydrophobicity but also exhibits superior electrothermal conversion and wide-spectrum high-light-transmittance characteristics. Therefore, the study of graphene glass films is of theoretical value and practical significance. In this study, a high-purity glass-based (JGS1 quartz glass) multilayer graphene film was developed based on an atmospheric-pressure chemical vapor deposition (APCVD) method, and its electrical characteristics, light transmittance, and electrical heating characteristics were experimentally investigated in detail. The results show that graphene glass with different surface resistance values obtained through direct growth on a high-purity quartz glass substrate using the APCVD method, not only has excellent uniformity and quality, but also has considerably flat and high transmittance across the entire visible light region and exhibits excellent heating performance and fast response time. For graphene glass with a surface resistance of 1500 Ω·sq-1, the light transmittance can reach 74%, and the saturation temperature can rise to 185 ℃ by applying a bias voltage of 40 V. In addition, when the resistance value of the graphene glass is 420 Ω·sq-1, the graphene glass reaches a high saturation temperature of 325 ℃ in 40 s, and the corresponding heating rate can exceed 18 ℃·s-1, achieving a significantly higher heating rate than other heating films at the same voltage. Compared with the polyethylene-terephthalate- (PET-) based and silicon-based graphene films obtained by the transfer, graphene glass has a higher saturation temperature, shorter thermal response time, and faster heating rate. Furthermore, graphene glass exhibits better heating cycle stability and longer-term heating stability at a constant voltage. In addition, an experiment using the graphene glass to thermally tune the wavelength of a vertical-cavity surface-emitting laser was conducted and gave good results. The position of the laser peak controlled by the graphene glass was red-shifted by 1.78 nm by applying a voltage of 20 V, and the wavelength tuning efficiency reached 0.059 nm·℃-1. Compared with PET-based and silicon-based graphene films, the actual electrical heating capacity of graphene glass increased by 195%. These experimental findings demonstrate that graphene glass transparent films with excellent electric heating characteristics can be used in various transparent electric heating fields and have relatively wide application prospects.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877  doi: 10.1126/science.1158877

    3. [3]

      Pop, E.; Varshney, V.; Roy, A. K. MRS Bulletin. 2012, 37, 1273. doi: 10.1557/mrs.2012.203  doi: 10.1557/mrs.2012.203

    4. [4]

      Young, R. J.; Kinloch, I. A.; Gong, L.; Novoselov, K. S. Comp. Sci. Technol. 2012, 72, 1459. doi: 10.1016/j.compscitech.2012.05.005  doi: 10.1016/j.compscitech.2012.05.005

    5. [5]

      Zhu, S. E.; Yuan, S. J.; Janssen, G. C. A. M. Europhys. Lett. 2014, 108, 17007. doi: 10.1209/0295-5075/108/17007  doi: 10.1209/0295-5075/108/17007

    6. [6]

      Bora, C.; Gogoi, P.; Baglari, S.; Dolui, S. K. J. Appl. Polym. Sci. 2013, 129, 3432. doi: 10.1002/app.39068  doi: 10.1002/app.39068

    7. [7]

      Brown, M. A.; Crosser, M. S.; Leyden, M. R.; Qi, Y.; Minot, E. D. Appl. Phys. Lett. 2016, 109, 093104. doi: 10.1063/1.4962141  doi: 10.1063/1.4962141

    8. [8]

      Shi, Y.; Ma, W.; Wu, L.; Hu, D.; Zhang, Z. J. Appl. Polym. Sci. 2019, 136, 47951. doi: 10.1002/app.47951  doi: 10.1002/app.47951

    9. [9]

      Tomadin, A.; Hornett, S. M.; Wang, H. I.; Alexeev, E. M.; Candini, A.; Coletti, C.; Turchinovich, D.; Klaui, M.; Bonn, M.; Koppens, F. H. L. Sci. Adv. 2018, 4, eaar5313. doi: 10.1126/sciadv.aar5313  doi: 10.1126/sciadv.aar5313

    10. [10]

      Yuan, L.; Yan, X.; Wang, Y.; Sang, T.; Yang, G. Appl. Phys. Express. 2016, 9, 092202. doi: 10.7567/APEX.9.092202  doi: 10.7567/APEX.9.092202

    11. [11]

      Liu, N.; Chortos, A.; Lei, T.; Jin, L.; Bao, Z. Sci. Adv. 2017, 3, e1700159. doi: 10.1126/sciadv.1700159  doi: 10.1126/sciadv.1700159

    12. [12]

      Kobayashi, S.; Anno, Y.; Takei, K.; Arie, T.; Akita, S. Sci. Rep. 2018, 8, 4811. doi: 10.1038/s41598-018-22974-7  doi: 10.1038/s41598-018-22974-7

    13. [13]

      Fang, J.; Wang, D.; Devault, C. T.; Chung, T. F.; Kildishev, A. V. Nano. Lett. 2016, 17, 57. doi: 10.1021/acs.nanolett.6b03202  doi: 10.1021/acs.nanolett.6b03202

    14. [14]

      Yoo, T. J.; Kim, Y. J.; Lee, S. K.; Kang, C. G.; Lee, B. H. ACS Photonics 2017, 5, 365. doi: 10.1021/acsphotonics.7b01405  doi: 10.1021/acsphotonics.7b01405

    15. [15]

      Wu, Z.; Zhang, X. Acta Phys. -Chim. Sin. 2017, 33, 305.  doi: 10.3866/PKU.WHXB201611012

    16. [16]

      Kim, S.; Kim, S. K.; Sun, P.; Oh, N.; Braun, P. V. Nano Lett. 2017, 17, 6893. doi: 10.1021/acs.nanolett.7b03290  doi: 10.1021/acs.nanolett.7b03290

    17. [17]

      Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Prog. Mater. Sci. 2017, 90. 75. doi: 10.1016/j.pmatsci.2017.07.004  doi: 10.1016/j.pmatsci.2017.07.004

    18. [18]

      Xia, K. L.; Jian, M. Q.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2016, 32, 2427.  doi: 10.3866/PKU.WHXB201607261

    19. [19]

      Sun, J.; Chen, Y.; Priydarshi, M. K.; Gao, T.; Song, X.; Zhang, Y.; Liu, Z. Adv. Mater. 2016, 28, 10333. doi: 10.1002/adma.201602247  doi: 10.1002/adma.201602247

    20. [20]

      Chen, Z. L; Guan, B. L.; Chen, X. D.; Zeng, Q.; Liu, Z. F. Nano Res. 2016, 9, 3048. doi: 10.1007/s12274-016-1187-6  doi: 10.1007/s12274-016-1187-6

    21. [21]

      Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14.  doi: 10.3866/PKU.WHXB201511133

    22. [22]

      Sun, J.; Chen, Y.; Cai, X.; Ma, B.; Chen, Z. Nano Res. 2015, 8, 3496. doi: 10.1007/s12274-015-0849-0  doi: 10.1007/s12274-015-0849-0

    23. [23]

      Usachov, D. Y.; Davydov, V. Y.; Levitskii, V. S.; Shevelev, V. O.; Vyalikh, D. V. ACS Nano 2017, 11, 6336. doi: 10.1021/acsnano.7b02686  doi: 10.1021/acsnano.7b02686

    24. [24]

      Li, J.; Liang, J.; Jian, X.; Hu, W.; Li, J.; Pei, Q. Macromol. Mater. Eng. 2014, 299, 1403. doi: 10.1002/mame.201400097  doi: 10.1002/mame.201400097

    25. [25]

      Sui, D.; Huang, Y.; Huang, L.; Liang, J.; Ma, Y.; Chen, Y. Small 2011, 7, 3186. doi: 10.1002/smll.201101305  doi: 10.1002/smll.201101305

    26. [26]

      Bae, J. J.; Lim, S. C.; Han, G. H.; Jo, Y. W.; Doung, D. L.; Kim, E. S.; Chae, S. J.; Ta, H. Q.; Nguyen, V. L.; Lee, Y. H. Adv. Funct. Mater. 2012, 22, 4819. doi: 10.1002/adfm.201201155  doi: 10.1002/adfm.201201155

    27. [27]

      Celle, C.; Céline Mayousse; Eléonore Moreau; Basti, H.; Carella, A.; Simonato, J. P. Nano Res. 2012, 5, 427. doi: 10.1007/s12274-012-0225-2  doi: 10.1007/s12274-012-0225-2

    28. [28]

      Haile, M.; Sweeney, C. B.; Lackey, B. A.; Sarwar, O.; Grunlan, J. C. Adv. Mater. Interfaces. 2017, 4, 1700371. doi: 10.1002/admi.201700371  doi: 10.1002/admi.201700371

    29. [29]

      Zhai, H.; Wang, R.; Wang, X.; Cheng, Y.; Shi, L.; Sun, J. Nano Res. 2016, 9, 3924. doi: 10.1007/s12274-016-1261-0  doi: 10.1007/s12274-016-1261-0

    30. [30]

      Ji, S.; He, W.; Wang, K.; Ran, Y.; Ye, C. Small 2014, 10, 4951. doi: 10.1002/smll.201401690  doi: 10.1002/smll.201401690

    31. [31]

      Chen, Z.; Ge, X.; Gu, Y. Calorimetry and Thermophysical Determination; University of Science and Technology of China Press: Hefei, 1990; pp. 39-61.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    11. [11]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    12. [12]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    16. [16]

      Naiying Fan Chuanli Qin Guo Zhang Bin Wang Yan Wang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061

    17. [17]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    18. [18]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

Metrics
  • PDF Downloads(18)
  • Abstract views(262)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return