Citation: Silan Wang, Guorui Yang, Nasir Muhammad Salman, Xiaojun Wang, Jianan Wang, Wei Yan. Research Progress on Phosphorus-based Anode Materials for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(12): 200100. doi: 10.3866/PKU.WHXB202001003 shu

Research Progress on Phosphorus-based Anode Materials for Sodium-Ion Batteries

  • Corresponding author: Guorui Yang, yangguorui@xjtu.edu.cn Wei Yan, yanwei@xjtu.edu.cn
  • Received Date: 2 January 2020
    Revised Date: 12 February 2020
    Accepted Date: 6 March 2020
    Available Online: 16 March 2020

    Fund Project: the National Natural Science Foundation of China 51978569the National Natural Science Foundation of China 51908458the Natural Science Fund of Jiangsu Province, China BK20170416the China Postdoctoral Science Foundation 2019M650264the China Postdoctoral Science Foundation 2018M643635

  • The availability of renewable energy resources (e.g., solar, wind, and tides) is crucial for promoting sustainable development and alleviating environmental issues. However, the intermittent nature of renewable energy requires the application of grid-level electrical-energy storage (EES) technologies to achieve a continuous supply of electricity. As is well known, lithium-ion batteries (LIBs) with high energy density dominate the rechargeable battery market. When faced with the requirements of large-scale power stations, high cost, and limited availability of raw materials, these become serious issues in the application of LIBs. In contrast, sodium-ion batteries (SIBs), which share similar operation mechanisms with LIBs, are considered to be more suitable for grid-level storage due to easy accessibility and geographically available reserves of sodium raw material, with significant improvements in its processing technology made recently. Nevertheless, limited energy density and unsatisfactory cycling life hinder the commercialization of SIBs significantly, which necessitates the use of novel electrode materials with high specific capacities and extended durability. Compared with the accelerated development of cathodes, graphite, on the anode side, as a commercialized anode for LIBs fails to store Na-ions owing to unfavorable thermodynamics. Hence, discovering and designing novel anode materials for SIBs have become a significant challenge. Among different anode materials, phosphorus-based (including phosphides) anodes have been recognized as one of the most promising materials because of their high theoretical capacity (2596 mAh·g-1 for phosphorus) and the abundance of phosphorus resources. Nonetheless, phosphorus-based anodes exhibit low conductivity and large volume expansion, resulting in inferior cycling performance and rating property. Therefore, various strategies, including nanosizing, morphology control, and carbon (non-carbon) modification, have been adopted to improve the performance of phosphorus-based anodes. In this review, the current progress on phosphorus-based anodes for SIBs are summarized. The Na-storage mechanisms of phosphorus-based materials are briefly discussed. Next, strategies for overcoming the disadvantages of phosphorus-based anodes are discussed extensively, including the size and morphology adjustment as well as the carbon (non-carbon) modification. Specifically, the carbon modification not only increases the conductivity but also decreases the volume expansion. Finally, the challenges and perspective of phosphorus-based anodes for SIBs are proposed. In this review paper, the development of suitable anode materials that can help to accelerate the commercialization of SIBs is highlighted.
  • 加载中
    1. [1]

      Wen, L.; Zhou, M.; Wang, C.; Mi, Y.; Lei, Y. Adv. Eng. Mater. 2016, 6, 1600468. doi: 10.1002/aenm.201600468  doi: 10.1002/aenm.201600468

    2. [2]

      Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2017, 16, 57. doi: 10.1038/nmat4738  doi: 10.1038/nmat4738

    3. [3]

      Schlapbach, L.; Zuttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634  doi: 10.1038/35104634

    4. [4]

      Wang, X.; Kim, H. M.; Xiao, Y.; Sun, Y. K. J. Mater. Chem. A 2016, 4, 14915. doi:10.1039/c6ta06705k  doi: 10.1039/c6ta06705k

    5. [5]

      Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Adv. Eng. Mater. 2016, 6, 19. doi: 10.1002/aenm.201502175  doi: 10.1002/aenm.201502175

    6. [6]

      Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J.; et al. Nature 2015, 520, 324. doi: 10.1038/nature14340  doi: 10.1038/nature14340

    7. [7]

      Wang, L.; Yang, G. R.; Wang, J. N.; Wang, S. L.; Peng, S. J.; Yan, W. Acta Chim. Sin. 2018, 76, 666.  doi: 10.6023/A18040129

    8. [8]

      Chen, G. H.; Bai, Y.; Gao, Y. S.; Wu, F.; Wu, C. Acta Phys. -Chim. Sin. 2020, 36 (5), 1905099.  doi: 10.3866/PKU.WHXB201905009

    9. [9]

      Fang, Y. J.; Chen, C. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.  doi: 10.3866/PKU.WHXB201610111

    10. [10]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    11. [11]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    12. [12]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    13. [13]

      Guo, X.; Sun, B.; Su, D.; Liu, X.; Liu, H.; Wang, Y.; Wang, G. Sci. Bull. 2017, 62, 442. doi: 10.1016/j.scib.2017.01.037  doi: 10.1016/j.scib.2017.01.037

    14. [14]

      Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Nano Res. 2014, 7, 1. doi: 10.1007/s12274-013-0375-x  doi: 10.1007/s12274-013-0375-x

    15. [15]

      Yang, G.; Wang, L.; Zhao, Y.; Peng, S.; Wang, J.; Ji, D.; Wang, Z.; Yan, W.; Ramakrishna, S. Appl. Catal. B 2018, 225, 332. doi: 10.1016/j.apcatb.2017.11.062  doi: 10.1016/j.apcatb.2017.11.062

    16. [16]

      Yang, G.; Wang, L.; Peng, S.; Wang, J.; Ji, D.; Yan, W.; Ramakrishna, S. Small 2017, 13, 1702357. doi: 10.1002/smll.201702357  doi: 10.1002/smll.201702357

    17. [17]

      Li, X.; Chen, G.; Le, Z.; Li, X.; Nie, P.; Liu, X.; Xu, P.; Wu, H. B.; Liu, Z.; Lu, Y. Nano Energy 2019, 59, 464. doi: 10.1016/j.nanoen.2019.02.061  doi: 10.1016/j.nanoen.2019.02.061

    18. [18]

      Yaksic, A.; Tilton, J. E. Resour. Policy 2009, 34, 185. doi: 10.1016/j.resourpol.2009.05.002  doi: 10.1016/j.resourpol.2009.05.002

    19. [19]

      Palacin, M. R.; de Guibert, A. Science 2016, 351, 574. doi: 10.1126/science.1253292  doi: 10.1126/science.1253292

    20. [20]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    21. [21]

      Eftekhari, A.; Jian, Z. L.; Ji, X. L. ACS Appl. Mater. Interfaces 2017, 9, 4404. doi: 10.1021/acsami.6b07989  doi: 10.1021/acsami.6b07989

    22. [22]

      Xi, Y.; Huang, Y. L.; Wu, S. W.; Zeng, Y. X.; Yu, M. H.; Cheng, F. L.; Lu, X. H.; Tong, Y. X. Acta Phys. -Chim. Sin. 2018, 34, 219.  doi: 10.3866/PKU.WHXB201707173

    23. [23]

      Zhu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2016, 28, 2408. doi: 10.1002/adma.201670082  doi: 10.1002/adma.201670082

    24. [24]

      Wei, Q. L.; Fu, Y. Q.; Zhang, G. X.; Wang, Y. L.; Wang, X. Y.; Mohamedi, M.; Sun, S. H. RSC Adv. 2016, 6, 84149. doi: 10.1039/c6ra19393e  doi: 10.1039/c6ra19393e

    25. [25]

      Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A. M.; Tarascon, J. M. Nat. Commun. 2016, 7, 9. doi: 10.1038/ncomms10308  doi: 10.1038/ncomms10308

    26. [26]

      Chen, J.; Zhang, Y.; Zou, G. Q.; Huang, Z. D.; Li, S. M.; Liao, H. X.; Wang, J. F.; Hou, H. S.; Ji, X. B. Small 2016, 12, 5554. doi: 10.1002/smll.201601938  doi: 10.1002/smll.201601938

    27. [27]

      Xiao, Y.; Lee, S. H.; Sun, Y. K. Adv. Eng. Mater. 2017, 7, 20. doi: 10.1002/aenm.201601329  doi: 10.1002/aenm.201601329

    28. [28]

      Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. Adv. Eng. Mater. 2017, 7, 1601424. doi: 10.1002/aenm.201601424  doi: 10.1002/aenm.201601424

    29. [29]

      Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Chem. Soc. Rev. 2017, 46, 3529. doi: 10.1039/C6CS00776G  doi: 10.1039/C6CS00776G

    30. [30]

      Sun, D.; Luo, B.; Wang, H.; Tang, Y.; Ji, X.; Wang, L. Nano Energy 2019, 64, 103937. doi: 10.1016/j.nanoen.2019.103937  doi: 10.1016/j.nanoen.2019.103937

    31. [31]

      He, H.; Sun, D.; Tang, Y.; Wang, H.; Shao, M. Energy Storage Mater. 2019, 23, 233. doi: 10.1016/j.ensm.2019.05.008  doi: 10.1016/j.ensm.2019.05.008

    32. [32]

      Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 8. doi: 10.1038/ncomms5358  doi: 10.1038/ncomms5358

    33. [33]

      Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. Nat. Mater. 2007, 6, 749. doi: 10.1038/nmat2007  doi: 10.1038/nmat2007

    34. [34]

      Lee, H. W.; Wang, R. Y.; Pasta, M.; Lee, S. W.; Liu, N.; Cui, Y. Nat. Commun. 2014, 5, 6. doi: 10.1038/ncomms6280  doi: 10.1038/ncomms6280

    35. [35]

      Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859. doi: 10.1002/adfm.201100854  doi: 10.1002/adfm.201100854

    36. [36]

      Hou, H. S.; Qiu, X. Q.; Wei, W. F.; Zhang, Y.; Ji, X. B. Adv. Eng. Mater. 2017, 7, 30. doi: 10.1002/aenm.201602898  doi: 10.1002/aenm.201602898

    37. [37]

      Xiang, X. D.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343. doi: 10.1002/adma.201501527  doi: 10.1002/adma.201501527

    38. [38]

      Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. Chem. -Eur. J. 2014, 20, 11980. doi: 10.1002/chem.201402511  doi: 10.1002/chem.201402511

    39. [39]

      Feng, L. G.; Xue, H. G. ChemElectroChem. 2017, 4, 20. doi: 10.1002/celc.201600563  doi: 10.1002/celc.201600563

    40. [40]

      Yang, G.; Ilango, P. R.; Wang, S.; Nasir, M. S.; Li, L.; Ji, D.; Hu, Y.; Ramakrishna, S.; Yan, W.; Peng, S. Small 2019, 15, 1900628. doi: 10.1002/smll.201900628  doi: 10.1002/smll.201900628

    41. [41]

      Liu, T.; Zhang, Y.; Jiang, Z.; Zeng, X.; Ji, J.; Li, Z.; Gao, X.; Sun, M.; Lin, Z.; Ling, M.; et al. Energy Environ. Sci. 2019, 12, 1512. doi: 10.1039/c8ee03727b  doi: 10.1039/c8ee03727b

    42. [42]

      Deng, J.; Luo, W. B.; Chou, S. L.; Liu, H. K.; Dou, S. X. Adv. Eng. Mater. 2018, 8, 1701428. doi: 10.1002/aenm.201701428  doi: 10.1002/aenm.201701428

    43. [43]

      Cao, X. X.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Acta Phys. -Chim. Sin. 2020, 36, 1905018.  doi: 10.3866/PKU.WHXB201905018

    44. [44]

      Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003.  doi: 10.3866/PKU.WHXB201905003

    45. [45]

      Tan, H.; Chen, D.; Rui, X.; Yu, Y. Adv. Funct. Mater. 2019, 29, 1808745. doi: 10.1002/adfm.201808745  doi: 10.1002/adfm.201808745

    46. [46]

      Pang, J.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z.; Rummeli, M. H. Adv. Eng. Mater. 2018, 8, 1702093. doi: 10.1002/aenm.201702093  doi: 10.1002/aenm.201702093

    47. [47]

      Bridgman, P. W. J. Am. Chem. Soc. 1914, 36, 1344. doi: 10.1021/ja02184a002  doi: 10.1021/ja02184a002

    48. [48]

      Brown, A.; Rundqvist, S. Acta Crystallogr. 1965, 19, 684. doi: 10.1107/s0365110x65004140  doi: 10.1107/s0365110x65004140

    49. [49]

      Appalakondaiah, S.; Vaitheeswaran, G.; Lebegue, S.; Christensen, N. E.; Svane, A. Phys. Rev. B 2012, 86, 9. doi: 10.1103/PhysRevB.86.035105  doi: 10.1103/PhysRevB.86.035105

    50. [50]

      Shulenburger, L.; Baczewski, A. D.; Zhu, Z.; Guan, J.; Tomanek, D. Nano Lett. 2015, 15, 8170. doi: 10.1021/acs.nanolett.5b03615  doi: 10.1021/acs.nanolett.5b03615

    51. [51]

      Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. Adv. Mater. 2015, 27, 1887. doi: 10.1002/adma.201405150  doi: 10.1002/adma.201405150

    52. [52]

      Favron, A.; Gaufres, E.; Fossard, F.; Phaneuf-L'Heureux, A. L.; Tang, N. Y. W.; Levesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Nat. Mater. 2015, 14, 826. doi: 10.1038/nmat4299  doi: 10.1038/nmat4299

    53. [53]

      Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. ACS Nano 2015, 9, 3596. doi: 10.1021/acsnano.5b01143  doi: 10.1021/acsnano.5b01143

    54. [54]

      Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O'Brien, P. Chem. Commun. 2014, 50, 13338. doi: 10.1039/c4cc05752j  doi: 10.1039/c4cc05752j

    55. [55]

      Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; et al. 2D Mater. 2014, 1, 19. doi: 10.1088/2053-1583/1/2/025001  doi: 10.1088/2053-1583/1/2/025001

    56. [56]

      Bai, L. Y.; Sun, L. Q.; Wang, Y.; Liu, Z. Z.; Gao, Q.; Xiang, H. J.; Xie, H. M.; Zhao, Y. L. J. Mater. Chem. A 2017, 5, 8280. doi: 10.1039/c6ta08140a  doi: 10.1039/c6ta08140a

    57. [57]

      Abellán, G.; Lloret, V.; Mundloch, U.; Marcia, M.; Neiss, C.; Görling, A.; Varela, M.; Hauke, F.; Hirsch, A. Angew. Chem. 2016, 128, 14777. doi: 10.1002/ange.201604784  doi: 10.1002/ange.201604784

    58. [58]

      Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Adv. Mater. 2013, 25, 3045. doi: 10.1002/adma.201204877  doi: 10.1002/adma.201204877

    59. [59]

      Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H. Angew. Chem. 2013, 125, 4731. doi: 10.1002/ange.201209689  doi: 10.1002/ange.201209689

    60. [60]

      Gusmão, R.; Sofer, Z.; Pumera, M. Angew. Chem. 2017, 129, 8164. doi: 10.1002/ange.201610512  doi: 10.1002/ange.201610512

    61. [61]

      Ni, J.; Li, L.; Lu, J. ACS Energy Lett. 2018, 3, 1137. doi: 10.1021/acsenergylett.8b00312  doi: 10.1021/acsenergylett.8b00312

    62. [62]

      Xia, Q.; Li, W.; Miao, Z.; Chou, S.; Liu, H. Nano Res. 2017, 10, 4055. doi: 10.1007/s12274-017-1671-7  doi: 10.1007/s12274-017-1671-7

    63. [63]

      Yang, F.; Gao, H.; Chen, J.; Guo, Z. Small Methods. 2017, 1, 1700216. doi: 10.1002/smtd.201700216  doi: 10.1002/smtd.201700216

    64. [64]

      Nie, A.; Cheng, Y.; Ning, S.; Foroozan, T.; Yasaei, P.; Li, W.; Song, B.; Yuan, Y.; Chen, L.; Salehi-Khojin, A. Nano Lett. 2016, 16, 2240. doi: 10.1021/acs.nanolett.5b04514  doi: 10.1021/acs.nanolett.5b04514

    65. [65]

      Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. Nat. Nanotechnol. 2015, 10, 980. doi: 10.1038/nnano.2015.194  doi: 10.1038/nnano.2015.194

    66. [66]

      Hao, X.; Jiang, Z.; Tian, X.; Hao, X.; Maiyalagan, T.; Jiang, Z. J. J. Alloys Compd. 2019, 791, 1220. doi: 10.1016/j.jallcom.2019.03.311  doi: 10.1016/j.jallcom.2019.03.311

    67. [67]

      Wang, L.; Zhao, X.; Dai, S.; Shen, Y.; Wang, M. Electrochim. Acta 2019, 314, 142. doi: 10.1016/j.electacta.2019.05.071  doi: 10.1016/j.electacta.2019.05.071

    68. [68]

      Sun, D.; Zhu, X.; Luo, B.; Zhang, Y.; Tang, Y.; Wang, H.; Wang, L. Adv. Energy Mater. 2018, 8, 1801197. doi: 10.1002/aenm.201801197  doi: 10.1002/aenm.201801197

    69. [69]

      Liu, J.; Wang, S.; Kravchyk, K.; Ibanez, M.; Krumeich, F.; Widmer, R.; Nasiou, D.; Meyns, M.; Llorca, J.; Arbiol, J.; et al. J. Mater. Chem. A 2018, 6, 10958. doi: 10.1039/C8TA01492B  doi: 10.1039/C8TA01492B

    70. [70]

      Fu, Y.; Wei, Q.; Zhang, G.; Sun, S. Adv. Energy Mater. 2018, 8, 1702849. doi: 10.1002/aenm.201702849  doi: 10.1002/aenm.201702849

    71. [71]

      Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Nano Lett. 2014, 14, 4573. doi: 10.1021/nl501617j  doi: 10.1021/nl501617j

    72. [72]

      Liu, Y. H.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Cao, X. A.; Ma, Y. Q.; Chen, L. A.; Lau, C.; Chen, T. C.; Wei, F.; et al. ACS Nano 2017, 11, 5530. doi: 10.1021/acsnano.7b00557  doi: 10.1021/acsnano.7b00557

    73. [73]

      Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Energy Environ. Sci. 2015, 8, 3531. doi: 10.1039/c5ee02074c  doi: 10.1039/c5ee02074c

    74. [74]

      Wang, C. D.; Ding, T.; Sun, Y.; Zhou, X. L.; Liu, Y.; Yang, Q. Nanoscale 2015, 7, 19241. doi: 10.1039/c5nr05432j  doi: 10.1039/c5nr05432j

    75. [75]

      Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Adv. Mater. 2017, 29, 8. doi: 10.1002/adma.201605820  doi: 10.1002/adma.201605820

    76. [76]

      Extance, P.; Elliott, S. R. Philos. Mag. B 1981, 43, 469. doi: 10.1080/01418638108222110  doi: 10.1080/01418638108222110

    77. [77]

      Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Nano Lett. 2013, 13, 5480. doi: 10.1021/nl403053v  doi: 10.1021/nl403053v

    78. [78]

      Li, W.; Li, M.; Jiang, Y.; Wei, X.; Zhong, X.; Yu, Y.; Yang, Z.; Gu, L.; Gu, L.; Yu, Y.; et al. Nano Lett. 2016, 16, 1546. doi: 10.1021/acs.nanolett.5b03903  doi: 10.1021/acs.nanolett.5b03903

    79. [79]

      Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. ChemElectroChem 2014, 1, 580. doi: 10.1002/celc.201300149  doi: 10.1002/celc.201300149

    80. [80]

      Zhou, J.; Liu, X.; Cai, W.; Zhu, Y.; Liang, J.; Zhang, K.; Lan, Y.; Jiang, Z.; Wang, G.; Qian, Y. Adv. Mater. 2017, 29, 1700214. doi: 10.1002/adma.201700214  doi: 10.1002/adma.201700214

    81. [81]

      Liu, S.; Xu, H.; Bian, X.; Feng, J.; Liu, J.; Yang, Y.; Yuan, C.; An, Y.; Fan, R.; Ci, L. J. Mater. Chem. A 2018, 6, 12992. doi: 10.1039/C8TA03301C  doi: 10.1039/C8TA03301C

    82. [82]

      Li, J.; Wang, L.; Wang, Z.; Tian, G.; He, X. ACS Omega 2017, 2, 4440. doi: 10.1021/acsomega.7b00540  doi: 10.1021/acsomega.7b00540

    83. [83]

      Song, J.; Yu, Z.; Gordin, M. L.; Li, X.; Peng, H.; Wang, D. ACS Nano 2015, 9, 11933. doi: 10.1021/acsnano.5b04474  doi: 10.1021/acsnano.5b04474

    84. [84]

      Wu, N.; Yao, H. R.; Yin, Y. X.; Guo, Y. G. J. Mater. Chem. A 2015, 3, 24221. doi: 10.1039/c5ta08367b  doi: 10.1039/c5ta08367b

    85. [85]

      Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S. C.; Wang, C. ACS Nano 2015, 9, 3254. doi: 10.1021/acsnano.5b00376  doi: 10.1021/acsnano.5b00376

    86. [86]

      Xu, J.; Ding, J.; Zhu, W.; Zhou, X.; Ge, S.; Yuan, N. Sci. China Mater. 2018, 61, 371. doi: 10.1007/s40843-017-9152-9  doi: 10.1007/s40843-017-9152-9

    87. [87]

      Song, J.; Yu, Z.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D.; Walter, T.; Regula, M.; Choi, D.; Li, X.; et al. Nano Lett. 2014, 14, 6329. doi: 10.1021/nl502759z  doi: 10.1021/nl502759z

    88. [88]

      Pei, L.; Zhao, Q.; Chen, C.; Liang, J.; Chen, J. ChemElectroChem 2015, 2, 1652. doi: 10.1002/celc.201500251  doi: 10.1002/celc.201500251

    89. [89]

      Gao, H.; Zhou, T.; Zheng, Y.; Liu, Y.; Chen, J.; Liu, H.; Guo, Z. Adv. Energy Mater. 2016, 6, 1601037. doi: 10.1002/aenm.201601037  doi: 10.1002/aenm.201601037

    90. [90]

      Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Mater. Chem. A 2016, 4, 505. doi: 10.1039/c5ta08590j  doi: 10.1039/c5ta08590j

    91. [91]

      Yao, S.; Cui, J.; Huang, J.; Huang, J. Q.; Chong, W. G.; Qin, L.; Mai, Y. W.; Kim, J. K. Adv. Eng. Mater. 2018, 8, 1702267. doi: 10.1002/aenm.201702267  doi: 10.1002/aenm.201702267

    92. [92]

      Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Adv Mater. 2013, 25, 3045. doi: 10.1002/adma.201204877  doi: 10.1002/adma.201204877

    93. [93]

      Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H. Angew. Chem. Int. Ed. 2013, 52, 4633. doi: 10.1002/anie.201209689  doi: 10.1002/anie.201209689

    94. [94]

      Li, W.; Hu, S.; Luo, X.; Li, Z.; Sun, X.; Li, M.; Liu, F.; Yu, Y. Adv. Mater. 2017, 29. doi: 10.1002/adma.201605820  doi: 10.1002/adma.201605820

    95. [95]

      Ruan, B.; Wang, J.; Shi, D.; Xu, Y.; Chou, S.; Liu, H.; Wang, J. J. Mater. Chem. A 2015, 3, 19011 doi: 10.1039/c5ta04366b  doi: 10.1039/c5ta04366b

    96. [96]

      Ma, X.; Chen, L.; Ren, X.; Hou, G.; Chen, L.; Zhang, L.; Liu, B.; Ai, Q.; Zhang, L.; Si, P.; et al. J. Mater. Chem. A 2018, 6, 1574. doi: 10.1039/c7ta07762a  doi: 10.1039/c7ta07762a

    97. [97]

      Lee, G. H.; Jo, M. R.; Zhang, K.; Kang, Y. M. J. Mater. Chem. A 2017, 5, 3683. doi: 10.1039/C6TA09967J  doi: 10.1039/C6TA09967J

    98. [98]

      Liu, Y.; Zhang, A.; Shen, C.; Liu, Q.; Cao, X.; Ma, Y.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F.; et al. ACS Nano 2017, 11, 5530. doi: 10.1021/acsnano.7b00557  doi: 10.1021/acsnano.7b00557

    99. [99]

      Liu, Y.; Zhang, A.; Shen, C.; Liu, Q.; Cai, J.; Cao, X.; Zhou, C. Nano Res. 2018, 11, 3780. doi: 10.1007/s12274-017-1952-1  doi: 10.1007/s12274-017-1952-1

    100. [100]

      Zeng, G.; Hu, X.; Zhou, B.; Chen, J.; Cao, C.; Wen, Z. Nanoscale 2017, 9, 14722. doi: 10.1039/c7nr05470j  doi: 10.1039/c7nr05470j

    101. [101]

      Liu, S.; Xu, H.; Bian, X.; Feng, J.; Liu, J.; Yang, Y.; Yuan, C.; An, Y.; Fan, R.; Ci, L. ACS Nano 2018, 12, 7380. doi: 10.1021/acsnano.8b04075  doi: 10.1021/acsnano.8b04075

    102. [102]

      Zhou, J.; Liu, X.; Zhu, L.; Niu, S.; Cai, J.; Zheng, X.; Ye, J.; Lin, Y.; Zheng, L.; Zhu, Z.; et al. Chemistry 2020, 6, 221. doi: 10.1016/j.chempr.2019.10.021  doi: 10.1016/j.chempr.2019.10.021

    103. [103]

      Zhou, J.; Jiang, Z.; Niu, S.; Zhu, S.; Zhou, J.; Zhu, Y.; Liang, J.; Han, D.; Xu, K.; Zhu, L.; et al. Chemistry 2018, 4, 372. doi: 10.1016/j.chempr.2018.01.006  doi: 10.1016/j.chempr.2018.01.006

    104. [104]

      Xu, Q.; Sun, J. K.; Yue, F. S.; Li, J. Y.; Li, G.; Xin, S.; Yin, Y. X.; Guo, Y. G. ACS Appl. Mater. Interfaces 2018, 10, 30479. doi: 10.1021/acsami.8b12571  doi: 10.1021/acsami.8b12571

    105. [105]

      Walter, M.; Kovalenko, M. V.; Erni, R. Sci. Rep. 2015, 5, 8418. doi: 10.1038/srep08418  doi: 10.1038/srep08418

    106. [106]

      Chin, L. C.; Yi, Y. H.; Chang, W. C.; Tuan, H. Y. Electrochim. Acta 2018, 266, 178. doi: 10.1016/j.electacta.2017.12.105  doi: 10.1016/j.electacta.2017.12.105

    107. [107]

      Hu, Y.; Li, B.; Jiao, X.; Zhang, C.; Dai, X.; Song, J. Adv. Funct. Mater. 2018, 28, 1801010. doi: 10.1002/adfm.201801010  doi: 10.1002/adfm.201801010

    108. [108]

      Kim, S. O.; Manthiram, A. Chem. Mater. 2016, 28, 5935. doi: 10.1021/acs.chemmater.6b02482  doi: 10.1021/acs.chemmater.6b02482

    109. [109]

      Lan, D.; Li, Q. ACS Appl. Energy Mater. 2019, 2, 661. doi: 10.1021/acsaem.8b01666  doi: 10.1021/acsaem.8b01666

    110. [110]

      Qin, G.; Duan, J.; Yang, Y.; Liu, F. ACS Appl. Mater. Interfaces 2018, 10, 6441. doi: 10.1021/acsami.7b17341  doi: 10.1021/acsami.7b17341

    111. [111]

      Liu, W.; Yuan, X.; Yu, X. Nanoscale 2018, 10, 16675. doi: 10.1039/C8NR04290J  doi: 10.1039/C8NR04290J

    112. [112]

      Choi, J. H.; Ha, C. W.; Choi, H. Y.; Shin, H. C.; Park, C. M.; Jo, Y. N.; Lee, S. M. Electrochim. Acta 2016, 210, 588. doi: 10.1016/j.electacta.2016.05.190  doi: 10.1016/j.electacta.2016.05.190

    113. [113]

      Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. ACS Nano 2014, 8, 4033. doi: 10.1021/nn501226z  doi: 10.1021/nn501226z

    114. [114]

      Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M. J. Mater. Chem. A 2015, 3, 5572. doi: 10.1039/C4TA06186A  doi: 10.1039/C4TA06186A

    115. [115]

      Peng, B.; Xu, Y.; Liu, K.; Wang, X.; Mulder, F. M. ChemElectroChem 2017, 4, 2140. doi: 10.1002/celc.201700345  doi: 10.1002/celc.201700345

    116. [116]

      Xu, G. L.; Chen, Z.; Zhong, G. M.; Liu, Y.; Yang, Y.; Ma, T.; Ren, Y.; Zuo, X.; Wu, X. H.; Zhang, X.; et al. Nano Lett. 2016, 16, 3955. doi: 10.1021/acs.nanolett.6b01777  doi: 10.1021/acs.nanolett.6b01777

    117. [117]

      Haghighat-Shishavan, S.; Nazarian-Samani, M.; Nazarian-Samani, M.; Roh, H. K.; Chung, K. Y.; Cho, B. W.; Kashani-Bozorg, S. F.; Kim, K. B. J. Mater. Chem. A 2018, 6, 10121. doi: 10.1039/C8TA02590H  doi: 10.1039/C8TA02590H

    118. [118]

      Feng, N.; Liang, X.; Pu, X.; Li, M.; Liu, M.; Cong, Z.; Sun, J.; Song, W.; Hu, W. J. Alloys Compd. 2019, 775, 1270. doi: 10.1016/j.jallcom.2018.10.143  doi: 10.1016/j.jallcom.2018.10.143

    119. [119]

      Shimizu, M.; Tsushima, Y.; Arai, S. ACS Omega 2017, 2, 4306. doi: 10.1021/acsomega.7b00950  doi: 10.1021/acsomega.7b00950

    120. [120]

      Zhang, Y.; Sun, W.; Luo, Z. Z.; Zheng, Y.; Yu, Z.; Zhang, D.; Yang, J.; Tan, H. T.; Zhu, J.; Wang, X.; et al. Nano Energy 2017, 40, 576. doi: 10.1016/j.nanoen.2017.09.002  doi: 10.1016/j.nanoen.2017.09.002

    121. [121]

      Meng, R.; Huang, J.; Feng, Y.; Zu, L.; Peng, C.; Zheng, L.; Zheng, L.; Chen, Z.; Liu, G.; Chen, B.; et al. Adv. Energy Mater. 2018, 8, 1801514. doi: 10.1002/aenm.201801514  doi: 10.1002/aenm.201801514

    122. [122]

      Chowdhury, C.; Karmakar, S.; Datta, A. ACS Energy Lett. 2016, 1, 253. doi: 10.1021/acsenergylett.6b00164  doi: 10.1021/acsenergylett.6b00164

    123. [123]

      Liu, H.; Tao, L.; Zhang, Y.; Xie, C.; Zhou, P.; Liu, H.; Chen, R.; Wang, S.; Wang, S.; Wang, S. ACS Appl. Mater. Interfaces 2017, 9, 36849. doi: 10.1021/acsami.7b11599  doi: 10.1021/acsami.7b11599

    124. [124]

      Li, M.; Muralidharan, N.; Moyer, K.; Pint, C. L. Nanoscale 2018, 10, 10443. doi: 10.1039/c8nr01400k  doi: 10.1039/c8nr01400k

    125. [125]

      Liu, Y.; Liu, Q.; Zhang, A.; Cai, J.; Cao, X.; Li, Z.; Asimow, P. D.; Zhou, C. ACS Nano 2018, 12, 8323. doi: 10.1021/acsnano.8b03615  doi: 10.1021/acsnano.8b03615

    126. [126]

      Shuai, H.; Ge, P.; Hong, W.; Li, S.; Hu, J.; Hou, H.; Zou, G.; Ji, X. Small Methods 2019, 3, 1800328. doi: 10.1002/smtd.201800328  doi: 10.1002/smtd.201800328

    127. [127]

      Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Adv. Mater. 2014, 26, 4139. doi: 10.1002/adma.201305638  doi: 10.1002/adma.201305638

    128. [128]

      Li, W.; Chou, S. L.; Wang, J. Z.; Kim, J. H.; Liu, H. K.; Dou, S. X. Adv. Mater. 2014, 26, 4037. doi: 10.1002/adma.201400794  doi: 10.1002/adma.201400794

    129. [129]

      Shin, H. S.; Jung, K. N.; Jo, Y. N.; Park, M. S.; Kim, H.; Lee, J. W. Sci. Rep. 2016, 6, 26195. doi: 10.1038/srep26195  doi: 10.1038/srep26195

    130. [130]

      Huang, S.; Meng, C.; Xiao, M.; Ren, S.; Wang, S.; Han, D.; Li, Y.; Meng, Y. Sustain. Energy Fuels 2017, 1, 1944. doi: 10.1039/C7SE00355B  doi: 10.1039/C7SE00355B

    131. [131]

      Xu, Y.; Peng, B.; Mulder, F. M. Adv. Energy Mater. 2018, 8, 1701847. doi: 10.1002/aenm.201701847  doi: 10.1002/aenm.201701847

    132. [132]

      Qian, J.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Nano Lett. 2014, 14, 1865. doi: 10.1021/nl404637q  doi: 10.1021/nl404637q

    133. [133]

      Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S. C.; Wang, C. Adv. Energy Mater. 2015, 5, 1500174. doi: 10.1002/aenm.201500174  doi: 10.1002/aenm.201500174

    134. [134]

      Ma, L.; Yan, P.; Wu, S.; Zhu, G.; Shen, Y. J. Mater. Chem. A 2017, 5, 16994. doi: 10.1039/C7TA04900E  doi: 10.1039/C7TA04900E

    135. [135]

      Choi, J.; Kim, W. S.; Kim, K. H.; Hong, S. H. J. Mater. Chem. A 2018, 6, 17437. doi: 10.1039/C8TA05586F  doi: 10.1039/C8TA05586F

    136. [136]

      Pan, E.; Jin, Y.; Zhao, C.; Jia, M.; Chang, Q.; Jia, M. J. Alloys Compd. 2018, 769, 45. doi: 10.1016/j.jallcom.2018.07.361  doi: 10.1016/j.jallcom.2018.07.361

    137. [137]

      Li, Q.; Li, Z.; Zhang, Z.; Li, C.; Ma, J.; Wang, C.; Ge, X.; Dong, S.; Yin, L. Adv. Energy Mater. 2016, 6, 1600376. doi: 10.1002/aenm.201600376  doi: 10.1002/aenm.201600376

    138. [138]

      Pan, E.; Jin, Y.; Zhao, C.; Jia, M.; Chang, Q.; Zhang, R.; Jia, M. Appl. Surf. Sci. 2019, 475, 12. doi: 10.1016/j.apsusc.2018.12.259  doi: 10.1016/j.apsusc.2018.12.259

    139. [139]

      Lan, D.; Wang, W.; Li, Q. Nano Energy 2017, 39, 506. doi: 10.1016/j.nanoen.2017.07.026  doi: 10.1016/j.nanoen.2017.07.026

    140. [140]

      Ding, X.; Sun, H. ACS Appl. Energy Mater. 2019, 2, 4309. doi: 10.1021/acsaem.9b00525  doi: 10.1021/acsaem.9b00525

    141. [141]

      Zhang, W.; Mao, J.; Pang, W. K.; Guo, Z.; Chen, Z. Electrochim. Acta 2017, 235, 107. doi: 10.1016/j.electacta.2017.03.093  doi: 10.1016/j.electacta.2017.03.093

    142. [142]

      Li, W.; Ke, L.; Wei, Y.; Guo, S.; Gan, L.; Li, H.; Zhai, T.; Zhou, H. J. Mater. Chem. A 2017, 5, 4413. doi: 10.1039/C7TA00139H  doi: 10.1039/C7TA00139H

    143. [143]

      Liu, Y.; Xiao, X.; Fan, X.; Li, M.; Zhang, Y.; Zhang, W.; Chen, L. J. Alloys Compd. 2018, 744, 15. doi: 10.1016/j.jallcom.2018.01.358  doi: 10.1016/j.jallcom.2018.01.358

    144. [144]

      Ning, Q. L.; Hou, B. H.; Wang, Y. Y.; Liu, D. S.; Luo, Z. Z.; Li, W. H.; Yang, Y.; Guo, J. Z.; Wu, X. L. ACS Appl. Mater. Interfaces 2018, 10, 36902. doi: 10.1021/acsami.8b11103  doi: 10.1021/acsami.8b11103

    145. [145]

      Tseng, K. W.; Huang, S. B.; Chang, W. C.; Tuan, H. Y. Chem. Mater. 2018, 30, 4440. doi: 10.1021/acs.chemmater.8b01922  doi: 10.1021/acs.chemmater.8b01922

    146. [146]

      Liu, Q.; Wang, J.; Luo, Y.; Miao, L.; Yan, Y.; Xue, L.; Zhang, W. Electrochim. Acta 2017, 247, 820. doi: 10.1016/j.electacta.2017.07.012  doi: 10.1016/j.electacta.2017.07.012

    147. [147]

      Saddique, J.; Zhang, X.; Wu, T.; Wang, X.; Chen, X.; Su, H.; Liu, S.; Zhang, L.; Li, G.; Zhang, Y.; Yu, H. ACS Appl. Energy Mater. 2019, 2, 2223. doi: 10.1021/acsaem.8b02242  doi: 10.1021/acsaem.8b02242

    148. [148]

      Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Chem. Commun. 2015, 51, 3682. doi: 10.1039/c4cc09604e  doi: 10.1039/c4cc09604e

    149. [149]

      Zhang, W.; Dahbi, M.; Amagasa, S.; Yamada, Y.; Komaba, S. Electrochem. Commun. 2016, 69, 11. doi: 10.1016/j.elecom.2016.05.005  doi: 10.1016/j.elecom.2016.05.005

    150. [150]

      Yang, Q. R.; Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K. RSC Adv. 2015, 5, 80536. doi: 10.1039/C5RA18314F  doi: 10.1039/C5RA18314F

    151. [151]

      Ma, C.; Fu, Z.; Deng, C.; Liao, X.; He, Y.; Ma, Z.; Xiong, H. Chem. Commun. 2018, 54, 11348. doi: 10.1039/c8cc06291a  doi: 10.1039/c8cc06291a

    152. [152]

      Wang, B.; Wang, G.; Wang, H.; Bai, J. ChemNanoMat 2018, 4, 924. doi: 10.1002/cnma.201800112  doi: 10.1002/cnma.201800112

    153. [153]

      Wang, Y.; Fu, Q.; Li, C.; Li, H.; Tang, H. ACS Sustain. Chem. Eng. 2018, 6, 15083. doi: 10.1021/acssuschemeng.8b03561  doi: 10.1021/acssuschemeng.8b03561

    154. [154]

      Wang, Y.; Wu, C.; Wu, Z.; Cui, G.; Xie, F.; Guo, X.; Sun, X. Chem. Commun. 2018, 54, 9341. doi: 10.1039/C8CC03827A  doi: 10.1039/C8CC03827A

    155. [155]

      Wu, H.; Li, X.; Chen, L.; Dan, Y. Batteries Supercaps. 2019, 2, 144. doi: 10.1002/batt.201800113  doi: 10.1002/batt.201800113

    156. [156]

      Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. J. Mater. Chem. A 2015, 3, 21754. doi: 10.1039/c5ta05781g  doi: 10.1039/c5ta05781g

    157. [157]

      Kim, S. O.; Manthiram, A. Chem. Commun. 2016, 52, 4337. doi: 10.1039/c5cc10585d  doi: 10.1039/c5cc10585d

    158. [158]

      Zhang, Y.; Wang, G.; Wang, L.; Tang, L.; Zhu, M.; Wu, C.; Dou, S. X.; Wu, M. Nano Lett. 2019, 19, 2575. doi: 10.1021/acs.nanolett.9b00342  doi: 10.1021/acs.nanolett.9b00342

    159. [159]

      Mun, Y. S.; Yoon, Y.; Hur, J.; Park, M. S.; Bae, J.; Kim, J. H.; Yoon, Y. S.; Yoo, I. S.; Lee, S. G.; Kim, I. T. J. Power Sources 2017, 362, 115. doi: 10.1016/j.jpowsour.2017.07.031  doi: 10.1016/j.jpowsour.2017.07.031

    160. [160]

      Li, J.; Li, X.; Liu, P.; Zhu, X.; Ali, R. N.; Naz, H.; Yu, Y.; Xiang, B. ACS Appl. Mater. Interfaces 2019, 11, 11442. doi: 10.1021/acsami.8b22367  doi: 10.1021/acsami.8b22367

    161. [161]

      Zhu, J.; He, Q.; Liu, Y.; Key, J.; Nie, S.; Wu, M.; Shen, P. K. J. Mater. Chem. A 2019, 7, 16999. doi: 10.1039/c9ta04035h  doi: 10.1039/c9ta04035h

    162. [162]

      Jin, R.; Li, X.; Sun, Y.; Shan, H.; Fan, L.; Li, D.; Sun, X. ACS Appl. Mater. Interfaces 2018, 10, 14641. doi: 10.1021/acsami.8b00444  doi: 10.1021/acsami.8b00444

    163. [163]

      Li, Q.; Dong, S.; Zhang, Y.; Feng, S.; Wang, Q.; Yuan, J. Eur. J. Inorg. Chem. 2018, 2018, 3433. doi: 10.1002/ejic.201800311  doi: 10.1002/ejic.201800311

    164. [164]

      Zhao, W.; Ma, X.; Wang, G.; Long, X.; Li, Y.; Zhang, W.; Zhang, P. Appl. Surf. Sci. 2018, 445, 167. doi: 10.1016/j.apsusc.2018.03.126  doi: 10.1016/j.apsusc.2018.03.126

    165. [165]

      Zhao, D.; Zhao, R.; Dong, S.; Miao, X.; Zhang, Z.; Wang, C.; Yin, L. Energy Environ. Sci. 2019, 12, 2422. doi: 10.1039/c9ee00308h  doi: 10.1039/c9ee00308h

    166. [166]

      Ihsan-Ul-Haq, M.; Huang, H.; Cui, J.; Yao, S.; Wu, J.; Chong, W. G.; Huang, B.; Kim, J. K. J. Mater. Chem. A 2018, 6, 20184. doi: 10.1039/c8ta06841k  doi: 10.1039/c8ta06841k

    167. [167]

      Wang, J.; Wang, B.; Liu, X.; Wang, G.; Wang, H.; Bai, J. J. Colloid Interface Sci. 2019, 538, 187. doi: 10.1016/j.jcis.2018.11.093  doi: 10.1016/j.jcis.2018.11.093

    168. [168]

      Wang, Y.; Pan, Q.; Jia, K.; Wang, H.; Gao, J.; Xu, C.; Zhong, Y.; Alshehri, A. A.; Alzahrani, K. A.; Guo, X.; Sun, X. Inorg. Chem. 2019, 58, 6579. doi: 10.1021/acs.inorgchem.9b00451  doi: 10.1021/acs.inorgchem.9b00451

    169. [169]

      Zheng, J.; Huang, X.; Pan, X.; Teng, C.; Wang, N. Appl. Surf. Sci. 2019, 473, 699. doi: 10.1016/j.apsusc.2018.12.225  doi: 10.1016/j.apsusc.2018.12.225

    170. [170]

      Li, Z. Integr. Ferroelectr. 2018, 192, 88. doi: 10.1080/10584587.2018.1521672  doi: 10.1080/10584587.2018.1521672

    171. [171]

      Cao, Y.; Zhang, B.; Ou, X.; Li, Y.; Wang, C.; Cao, L.; Peng, C.; Zhang, J. New J. Chem. 2019, 43, 7386. doi: 10.1039/c9nj00884e  doi: 10.1039/c9nj00884e

    172. [172]

      Yin, Y.; Fan, L.; Zhang, Y.; Liu, N.; Zhang, N.; Sun, K. Nanoscale 2019, 11, 7129. doi: 10.1039/c9nr00406h  doi: 10.1039/c9nr00406h

    173. [173]

      Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Adv. Mater. 2014, 26, 4139. doi: 10.1002/adma.201305638  doi: 10.1002/adma.201305638

    174. [174]

      Lu, Y.; Zhou, P.; Lei, K.; Zhao, Q.; Tao, Z.; Chen, J. Adv. Eng. Mater. 2017, 7, 1601973. doi: 10.1002/aenm.201601973  doi: 10.1002/aenm.201601973

    175. [175]

      Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. J. Power Sources 2015, 294, 627. doi: 10.1016/j.jpowsour.2015.06.097  doi: 10.1016/j.jpowsour.2015.06.097

    176. [176]

      Marino, C.; Dupre, N.; Villevieille, C. J. Power Sources 2017, 365, 339. doi: 10.1016/j.jpowsour.2017.08.096  doi: 10.1016/j.jpowsour.2017.08.096

    177. [177]

      Jamieson, J. C. Science 1963, 139, 1291. doi: 10.1126/science.139.3561.1291  doi: 10.1126/science.139.3561.1291

    178. [178]

      Donohue, P. C.; Young, H. S. J. Solid State Chem. 1970, 1, 143. doi: 10.1016/0022-4596(70)90005-8  doi: 10.1016/0022-4596(70)90005-8

    179. [179]

      Shen, H.; Ma, Z.; Yang, B.; Guo, B.; Lyu, Y.; Wang, P.; Yang, H.; Li, Q.; Wang, H.; Liu, Z.; Nie, A. J. Power Sources 2019, 433, 126682. doi: 10.1016/j.jpowsour.2019.05.088  doi: 10.1016/j.jpowsour.2019.05.088

    180. [180]

      Duveau, D.; Israel, S. S.; Fullenwarth, J.; Cunin, F.; Monconduit, L. J. Mater. Chem. A 2016, 4, 3228. doi: 10.1039/C6TA00103C  doi: 10.1039/C6TA00103C

    181. [181]

      Coquil, G.; Fraisse, B.; Dupre, N.; Monconduit, L. ACS Appl. Energy Mater. 2018, 1, 3778. doi: 10.1021/acsaem.8b00567  doi: 10.1021/acsaem.8b00567

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    14. [14]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

Metrics
  • PDF Downloads(53)
  • Abstract views(1149)
  • HTML views(368)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return