Citation: Ran Qin, Sun Tianyang, Han Chongyu, Zhang Haonan, Yan Jian, Wang Jinglun. Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 191206. doi: 10.3866/PKU.WHXB201912068 shu

Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode

  • Corresponding author: Wang Jinglun, jlwang@hnust.edu.cn
  • Received Date: 27 December 2019
    Revised Date: 16 January 2020
    Accepted Date: 6 March 2020
    Available Online: 17 March 2020

    Fund Project: The project was supported by the Doctoral Foundation of Hunan University of Science and Technology, China (E518B1), 2019 Undergraduate Student Scientific Research Innovation Plan "Challenge Cup Project" of Hunan University of Science and Technology, China (TZ9003)the Doctoral Foundation of Hunan University of Science and Technology, China E518B12019 Undergraduate Student Scientific Research Innovation Plan "Challenge Cup Project" of Hunan University of Science and Technology, China TZ9003

  • As the application of lithium-ion batteries in advanced consumer electronics, energy storage systems, plug-in hybrid electric vehicles, and electric vehicles increases, there has emerged an urgent need for increasing the energy density of such batteries. Lithium metal anode is considered as the "Holy Grail" for high-energy-density electrochemical energy storage systems because of its low reduction potential (-3.04 V vs standard hydrogen electrode) and high theoretical specific capacity (3860 mAh·g-1). However, the practical application of lithium metal anode in rechargeable batteries is severely limited by irregular lithium dendrite growth and high reactivity with the electrolytes, leading to poor safety performance and low coulombic efficiency. Recent research progress has been well documented to suppress dendrite growth for achieving long-term stability of lithium anode, such as building artificial protection layers, developing novel electrolyte additives, constructing solid electrolytes, using functional separator, designing composite electrode or three-dimensional lithium-hosted material. Among them, the use of electrolyte additives is regarded as one of the most effective and economical methods to improve the performance of lithium-ion batteries. As a natural polyphenol compound, tannic acid (TA) is significantly cheaper and more abundant compared with dopamine, which is widely used for the material preparation and modification in the field of lithium-ion batteries. Herein, TA is first reported as an efficient electrolyte film-forming additive for lithium metal anode. By adding 0.15% (mass fraction, wt.) TA into the base electrolyte of 1 mol·L-1 LiPF6-EC/DMC/EMC (1 : 1 : 1, by wt.), the symmetric Li|Li cell exhibited a more stable cyclability of 270 h than that of only 170 h observed for the Li|Li cell without TA under the same current density of 1 mA·cm-2 and capacity of 1 mAh·cm-2 (with a cutoff voltage of 0.1 V). Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and energy-dispersive X-ray spectroscopy (EDS) analyses demonstrated that TA participated in the formation of a dense solid electrolyte interface (SEI) layer on the surface of the lithium metal. A possible reaction mechanism is proposed here, wherein the small amount of added polyphenol compound could have facilitated the formation of LiF through the hydrolysis of LiPF6, following which the resulting phenoxide could react with dimethyl carbonate (DMC) through transesterification to form a cross-linked polymer, thereby forming a unique organic/inorganic composite SEI film that significantly improved the electrochemical performance of the lithium metal anode. These results demonstrate that TA can be used as a promising film-forming additive for the lithium metal anode.
  • 加载中
    1. [1]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.  doi: 10.3866/PKU.WHXB201603231

    2. [2]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    3. [3]

      Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Mater. Today 2020, 33, 56. doi: 10.1016/j.mattod.2019.09.018  doi: 10.1016/j.mattod.2019.09.018

    4. [4]

      Wu, S. L.; Zhang, Z. Y.; Lan, M. H.; Yang, S. R.; Cheng, J. Y.; Cai, J. J.; Shen, J. H.; Zhu, Y.; Zhang, K. L.; Zhang, W. J. Adv. Mater. 2018, 30, 1705830..doi: 10.1002/adma.201705830  doi: 10.1002/adma.201705830

    5. [5]

      He, Y.; Xu, H. W.; Shi, J. L.; Liu, P. Y.; Tian, Z. Q.; Dong, N.; Luo, K.; Zhou, X. F.; Liu, Z. P. Energy Storage Mater. 2019, 23, 418. doi: 10.1016/j.ensm.2019.04.026  doi: 10.1016/j.ensm.2019.04.026

    6. [6]

      Li, Y. B.; Sun, Y. M.; Pei, A.; Chen, K. F.; Vailionis, A.; Li, Y. Z.; Zheng, G. Y.; Sun, J.; Cui, Y. ACS Central Sci. 2018, 4, 97. doi: 10.1021/acscentsci.7b00480  doi: 10.1021/acscentsci.7b00480

    7. [7]

      Dai, H. L.; Xi, K.; Liu, X.; Lai, C.; Zhang, S. Q. J. Am. Chem. Soc. 2018, 140, 17515. doi: 10.1021/jacs.8b08963  doi: 10.1021/jacs.8b08963

    8. [8]

      Shangguan, X. H.; Xu, G. J.; Cui, Z. L.; Wang, Q. L.; Du, X. F.; Chen, K.; Huang, S. Q.; Jia, G. F.; Li, F. Q.; Wang, X.; et al. Small 2019, 15, 1900269. doi: 10.1002/smll.201900269  doi: 10.1002/smll.201900269

    9. [9]

      Cui, Y. Acta Phys. -Chim. Sin. 2019, 35 (7), 661.  doi: 10.3866/PKU.WHXB201809053

    10. [10]

      Ran, Q.; Han, C. Y.; Tang, A. P.; Chen, H. Z.; Tang, Z. L.; Jiang, K. C.; Mai, Y. J.; Wang, J. L. Solid State Ionics 2020, 334, 115095. doi: 10.1016/j.ssi.2019.115095  doi: 10.1016/j.ssi.2019.115095

    11. [11]

      You, J. H.; Zhang, S. J.; Deng, L.; L, M. Z.; Zheng, X. M.; Li, J. T.; Zhou, Y.; Huang, L.; Sun, S. G. Electrochim. Acta 2019, 299, 636. doi: 10.1016/j.electacta.2019.01.045  doi: 10.1016/j.electacta.2019.01.045

    12. [12]

      Wang, Q.; Zhang, H.; Cui, Z.; Zhou, Q.; Shangguan, X.; Tian, S.; Zhou, X.; Cui, G. Energy Storage Mater. 2019, 23, 466. doi: 10.1016/j.ensm.2019.04.016  doi: 10.1016/j.ensm.2019.04.016

    13. [13]

      Song, R. S.; Wang, Bo.; Xie, Y.; Ruan, T. T.; Wang, F.; Yuan, Y.; Wang, D. L.; Dou, S. X. J. Mate. Chem. A 2018, 6, 17967. doi: 10.1039/C8TA06775a  doi: 10.1039/C8TA06775a

    14. [14]

      Jin, S.; Jiang, Y.; Ji, H. X.; Yu, Y. Adv. Mater. 2018, 30, 1802014. doi: 10.1002/adma.201802014  doi: 10.1002/adma.201802014

    15. [15]

      Shen, X.; Chen, X. B.; Shi, P.; Huang, J. Q.; Zhang, X. Q.; Yan, C.; Li, T.; Zhang, Q. J Energy Chem. 2019, 37, 29. doi: 10.1016/j.jechem.2018.11.016  doi: 10.1016/j.jechem.2018.11.016

    16. [16]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35 (12), 1365.  doi: 10.3866/PKU.WHXB201903008

    17. [17]

      Jia, W. S.; Fan, C.; Wang, L. P.; Wang, Q. J.; Zhao, M. J.; Zhou, A. J.; Li, J. Z. ACS Appl. Mater. Interfaces 2016, 8, 15399. doi: 10.1021/acsami.6b03897  doi: 10.1021/acsami.6b03897

    18. [18]

      Qian, J. F.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y. H.; Zhang, J. G. Nano Energy 2015, 15, 135. doi: 10.1016/j.nanoen.2015.04.009  doi: 10.1016/j.nanoen.2015.04.009

    19. [19]

      Liu, L. L.; Wang, S. L.; Zhang, Z. Y.; Fan, J. T.; Qi, W.; Chen, S. M. Ionics 2018, 25, 1035. doi: 10.1007/s11581-018-2641-0  doi: 10.1007/s11581-018-2641-0

    20. [20]

      Markevich, E.; Salitra, G.; Aurbach, D. ACS Energy Lett. 2017, 2, 1337. doi: 10.1021/acsenergylett.7b00163  doi: 10.1021/acsenergylett.7b00163

    21. [21]

      Li, S. P.; Fang, S.; Dou, H.; Zhang, X. G. ACS Appl. Mater. Interfaces 2019, 11, 20804. doi: 10.1021/acsami.9b03940  doi: 10.1021/acsami.9b03940

    22. [22]

      Liu, Q. Y.; Yang, G. J.; Liu, S.; Han, M.; Wang, Z. X.; Chen, L. Q. ACS Appl. Mater. Interfaces 2019, 11, 117435. doi: 10.1021/acsami.9b03417  doi: 10.1021/acsami.9b03417

    23. [23]

      Ouyang, Y.; Guo, Y. P.; Li, D.; Wei, Y. Q.; Zhai, T. Y.; Li, H. Q. ACS Appl. Mater. Interfaces 2019, 11, 11360. doi: 10.1021/acsami.8b21420  doi: 10.1021/acsami.8b21420

    24. [24]

      Zhang, J.T.; Yu, L.; Lou, X. W. D. Nano Res. 2017, 10, 4298. doi: 10.1007/s12274-016-1394-1  doi: 10.1007/s12274-016-1394-1

    25. [25]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    26. [26]

      Zhao, H.J.; Yu, X. Q.; Li, J. D.; Li, B.; Shao, H. Y.; Li, L.; Deng, Y. H. J. Mater. Chem. A 2019, 7, 8700. doi: 10.1039/C9TA00126C  doi: 10.1039/C9TA00126C

    27. [27]

      Yang, Y.; Xiong, J.; Lai, S. B.; Zhou, R.; Zhao, M.; Geng, H. B.; Zhang, Y. F.; Fang, Y. X.; Li, C. C.; Zhao, J. B. ACS Appl. Mater. Interfaces 2019, 11, 6118. doi: 10.1021/acsami.8b20706  doi: 10.1021/acsami.8b20706

    28. [28]

      Oh, J.; Jo, H.; Lee, H.; Kim, H. T.; Lee, Y. M.; Ryou, M. H. J. Power Sources 2019, 430, 130. doi: 10.1016/j.jpowsour.2019.05.003  doi: 10.1016/j.jpowsour.2019.05.003

    29. [29]

      Yue, H. Y; Du, T.; Wang, Q. X.; Shi, Z. P.; Dong, H.Y.; Cao, Z. X.; Qiao, Y.; Yin, Y. H.; Xing, R. M.; Yang, S. T. ACS Omega 2018, 3, 2699. doi: 10.1021/acsomega.7b01752  doi: 10.1021/acsomega.7b01752

    30. [30]

      Pan, L.; Wang, H. B.; Wu, C. L. M.; Liao, C. B.; Li, L. ACS Appl. Mater. Interfaces 2015, 7, 16003. doi: 10.1021/acsami.5b04245  doi: 10.1021/acsami.5b04245

    31. [31]

      Liao, C. B.; Xu, Q. K.; Wu, C. L. M.; Fang, D. L.; Chen, S. Y.; Chen, S. M.; Luo, J. S.; Li, L. J. Mater. Chem. A 2016, 4, 17215. doi: 10.1039/C6TA07359  doi: 10.1039/C6TA07359

    32. [32]

      Xu, Z.; Ye, H. J.; Li, H. Q.; Xu, Y. Z.; Wang, C. Y.; Yin, J.; Zhu, H. ACS Omega 2017, 2, 1273. doi: 10.1021/acsomega.6b00504  doi: 10.1021/acsomega.6b00504

    33. [33]

      Ding, F. Study on Lithium Metal Anode Material of High Specific Energy Lithium Secondary Battery. Ph. D. Dissertation, Harbin Institute of Technology, Harbin, 2006.

    34. [34]

      Amanchukwu, C. V.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. N. Adv. Energy Mater. 2019, 9, 1902116. doi: 10.1002/aenm.201902116  doi: 10.1002/aenm.201902116

    35. [35]

      Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Sci. Chin. Chem. 2019, 62, 1286. doi: 10.1007/s11426-019-9519-9  doi: 10.1007/s11426-019-9519-9

    36. [36]

      Lang, X. D.; He, L. N. Chem. Rec. 2016, 16, 1337. doi: 10.1002/tcr.201500293  doi: 10.1002/tcr.201500293

    37. [37]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. -Q.; Shen, X.; Yan, C.; Huang, J. -Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    38. [38]

      Yuan, Y. X.; Wu, F.; Chen, G. H.; Bai, Y.; Wu, C. J. Energy Chem. 2019, 37, 197. doi: 10.1016/j.jechem.2019.03.014  doi: 10.1016/j.jechem.2019.03.014

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    13. [13]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    16. [16]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    17. [17]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    18. [18]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    19. [19]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(11)
  • Abstract views(1654)
  • HTML views(499)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return