Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity
- Corresponding author: Jun Ma, majun@qibebt.ac.cn Guanglei Cui, cuigl@qibebt.ac.cn
Citation: Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 191206. doi: 10.3866/PKU.WHXB201912061
Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Adv. Mater. 2011, 23, 1695. doi: 10.1002/adma.201003587
doi: 10.1002/adma.201003587
Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
doi: 10.1038/35104644
Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16
doi: 10.1038/nnano.2017.16
Liu, B.; Zhang, J. G.; Xu, W. Joule 2018, 2, 833. doi: 10.1016/j.joule.2018.03.008
doi: 10.1016/j.joule.2018.03.008
Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Adv. Energy Mater. 2018, 8, 1702657. doi: 10.1002/aenm.201702657
doi: 10.1002/aenm.201702657
Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D. J. Mater. Chem. A 2018, 6, 11631. doi: 10.1039/c8ta03358g
doi: 10.1039/c8ta03358g
Nowak, S.; Winter, M. J. Electrochem. Soc. 2015, 162 (14), A2500. doi: 10.1149/2.0121514jes
doi: 10.1149/2.0121514jes
Schroeder, D. J.; Hubaud, A. A.; Vaughey, J. T. Mater. Res. Bull. 2014, 49, 614. doi: 10.1016/j.materresbull.2013.10.006
doi: 10.1016/j.materresbull.2013.10.006
Cui, W. Y.; An, M. Z.; Yang, P. X. Acta Phys. -Chim. Sin. 2010, 26 (5), 1233.
doi: 10.3866/PKU.WHXB20100530
Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F. Mater. Horiz. 2016, 3, 487. doi: 10.1039/c6mh00218h
doi: 10.1039/c6mh00218h
Hu, Y. S. Nat. Energy 2016, 1, 16042. doi: 10.1038/nenergy.2016.42
doi: 10.1038/nenergy.2016.42
Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141
doi: 10.1038/nenergy.2016.141
Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Chemistry 2019, 5, 2326. doi: 10.1016/j.chempr.2019.05.009
doi: 10.1016/j.chempr.2019.05.009
Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chemistry 2019, 5, 74. doi: 10.1016/j.chempr.2018.12.002
doi: 10.1016/j.chempr.2018.12.002
Zhu, Y.; He, X.; Mo, Y. ACS Appl. Mater. Interfaces 2015, 7, 23685. doi: 10.1021/acsami.5b07517
doi: 10.1021/acsami.5b07517
Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; et al. Chem. Rev. 2016, 116, 140. doi: 10.1021/acs.chemrev.5b00563
doi: 10.1021/acs.chemrev.5b00563
Chinnam, P. R.; Wunder, S. L. ACS Energy Lett. 2016, 2, 134. doi: 10.1021/acsenergylett.6b00609
doi: 10.1021/acsenergylett.6b00609
Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Adv. Energy Mater. 2016, 6(8), 1501590. doi: 10.1002/aenm.201501590
doi: 10.1002/aenm.201501590
Yao, X.; Huang, B.; Yin, J.; Peng, G.; Huang, Z.; Gao, C.; Liu, D.; Xu, X. Chin. Phys. B 2016, 25, 018802. doi: 10.1088/1674-1056/25/1/018802
doi: 10.1088/1674-1056/25/1/018802
Hu, P.; Chai, J.; Duan, Y.; Liu, Z.; Cui, G.; Chen, L. J. Mater. Chem. A 2016, 4, 10070. doi: 10.1039/c6ta02907h
doi: 10.1039/c6ta02907h
Zhang, X.; Wang, S.; Xue, C.; Xin, C.; Lin, Y.; Shen, Y.; Li, L.; Nan, C. W. Adv. Mater. 2019, 31, e1806082. doi: 10.1002/adma.201806082
doi: 10.1002/adma.201806082
Zhang, W.; Nie, J.; Li, F.; Wang, Z. L.; Sun, C. Nano Energy 2018, 45, 413. doi: 10.1016/j.nanoen.2018.01.028
doi: 10.1016/j.nanoen.2018.01.028
Fei, H. F.; Liu, Y. P.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Chen, C. Z.; Yu, H. J. Acta Phys. -Chim. Sin. 2020, 36 (5), 1905015.
doi: 10.3866/PKU.WHXB201905015
Quartarone, E.; Mustarelli, P. Chem. Soc. Rev. 2011, 40, 2525. doi: 10.1039/c0cs00081g
doi: 10.1039/c0cs00081g
Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Adv. Mater. 2019, 31(50), 1902029. doi: 10.1002/adma.201902029
doi: 10.1002/adma.201902029
Hu, T. S.; Hong, P. K.; Saikia, D.; Kao, H. M.; Chen, M. C. Ionics 2014, 20, 1561. doi: 10.1007/s11581-014-1107-2
doi: 10.1007/s11581-014-1107-2
Masoud, E. M.; El-Bellihi, A. A.; Bayoumy, W. A.; Mousa, M. A. J. Alloy. Compd. 2013, 575, 223. doi: 10.1016/j.jallcom.2013.04.054
doi: 10.1016/j.jallcom.2013.04.054
Zhang, X.; Liu, T.; Zhang, S.; Huang, X.; Xu, B.; Lin, Y.; Xu, B.; Li, L.; Nan, C. W.; Shen, Y. J. Am. Chem. Soc. 2017, 139, 13779. doi: 10.1021/jacs.7b06364
doi: 10.1021/jacs.7b06364
Zheng, J.; Tang, M.; Hu, Y. Y. Angew. Chem. Int. Ed. 2016, 55, 12538. doi: 10.1002/anie.201607539
doi: 10.1002/anie.201607539
Zhao, Y.; Wu, C.; Peng, G.; Chen, X.; Yao, X.; Bai, Y.; Wu, F.; Chen, S.; Xu, X. J. Power Sources 2016, 301, 47. doi: 10.1016/j.jpowsour.2015.09.111
doi: 10.1016/j.jpowsour.2015.09.111
Dieterich, W.; Dürr, O.; Pendzig, P.; Bunde, A.; Nitzan, A. Phys. A 1999, 266, 229. doi: 10.1016/S0378-4371(98)00597-4
doi: 10.1016/S0378-4371(98)00597-4
Li, Z.; Huang, H.; Zhu, J.; Wu, J.; Yang, H.; Wei, L.; Guo, X. ACS Appl. Mater. Interfaces 2018, 11 (1), 784. doi: 10.1021/acsami.8b17279
doi: 10.1021/acsami.8b17279
Kitajima, S.; Kitaura, H.; Im, D.; Hwang, Y.; Ishida, M.; Zhou, H. Solid State Ionics 2018, 316, 29. doi: 10.1016/j.ssi.2017.12.018
doi: 10.1016/j.ssi.2017.12.018
Chen, L.; Li, Y.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. Nano Energy 2018, 46, 176. doi: 10.1016/j.nanoen.2017.12.037
doi: 10.1016/j.nanoen.2017.12.037
Liu, X.; Peng, S.; Gao, S.; Cao, Y.; You, Q.; Zhou, L.; Jin, Y.; Liu, Z.; Liu, J. ACS Appl. Mater. Interfaces 2018, 10, 15691. doi: 10.1021/acsami.8b01631
doi: 10.1021/acsami.8b01631
Zhai, H.; Xu, P.; Ning, M.; Cheng, Q.; Mandal, J.; Yang, Y. Nano Lett. 2017, 17, 3182. doi: 10.1021/acs.nanolett.7b00715
doi: 10.1021/acs.nanolett.7b00715
Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y.; Lee, H. W.; Cui, Y. Nano Lett. 2015, 15, 2740. doi: 10.1021/acs.nanolett.5b00600
doi: 10.1021/acs.nanolett.5b00600
Zhu, P.; Yan, C.; Dirican, M.; Zhu, J.; Zang, J.; Selvan, R. K.; Chung, C. C.; Jia, H.; Li, Y.; Kiyak, Y.; et al. J. Mater. Chem. A 2018, 6, 4279. doi: 10.1039/c7ta10517g
doi: 10.1039/c7ta10517g
Liu, W.; Lee, S. W.; Lin, D.; Shi, F.; Wang, S.; Sendek, A. D.; Cui, Y. Nat. Energy 2017, 2, 17035. doi: 10.1038/nenergy.2017.35
doi: 10.1038/nenergy.2017.35
Tang, W.; Tang, S.; Zhang, C.; Ma, Q.; Xiang, Q.; Yang, Y. W.; Luo, J. Adv. Energy Mater. 2018, 8, 1800866. doi: 10.1002/aenm.201800866
doi: 10.1002/aenm.201800866
Tang, W.; Tang, S.; Guan, X.; Zhang, X.; Xiang, Q.; Luo, J. Adv. Funct. Mater. 2019, 29, 1900648. doi: 10.1002/adfm.201900648
doi: 10.1002/adfm.201900648
Jia, W.; Li, Z.; Wu, Z.; Wang, L.; Wu, B.; Wang, Y.; Cao, Y.; Li, J. Solid State Ionics 2018, 315, 7. doi: 10.1016/j.ssi.2017.11.026
doi: 10.1016/j.ssi.2017.11.026
Kammoun, M.; Berg, S.; Ardebili, H. Nanoscale 2015, 7, 17516. doi: 10.1039/c5nr04339e
doi: 10.1039/c5nr04339e
Cheng, S.; Smith, D. M.; Li, C. Y. Macromolecule 2015, 48, 4503. doi: 10.1021/acs.macromol.5b00972
doi: 10.1021/acs.macromol.5b00972
Yuan, M.; Erdman, J.; Tang, C.; Ardebili, H. RSC Adv. 2014, 4, 59637. doi: 10.1039/c4ra07919a
doi: 10.1039/c4ra07919a
Li, A.; Liao, X.; Zhang, H.; Shi, L.; Wang, P.; Cheng, Q.; Borovilas, J.; Li, Z.; Huang, W.; Fu, Z.; et al. Adv. Mater. 2019, 32, 1905517. doi: 10.1002/adma.201905517
doi: 10.1002/adma.201905517
Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J.; et al. Energy Environ. Sci. 2018, 11, 185. doi: 10.1039/c7ee02723k
doi: 10.1039/c7ee02723k
Xie, H.; Yang, C.; Fu, K.; Yao, Y.; Jiang, F.; Hitz, E.; Liu, B.; Wang, S.; Hu, L. Adv. Energy Mater. 2018, 8, 1703474. doi: 10.1002/aenm.201703474
doi: 10.1002/aenm.201703474
Bae, J.; Li, Y.; Zhang, J.; Zhou, X.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. Angew. Chem. Int. Ed. 2018, 57, 2096. doi: 10.1002/anie.201710841
doi: 10.1002/anie.201710841
Zhou, Q.; Zhang, J.; Cui, G. Macromol. Mater. Eng. 2018, 303, 1800337. doi: 10.1002/mame.201800337
doi: 10.1002/mame.201800337
Duan, H.; Fan, M.; Chen, W. P.; Li, J. Y.; Wang, P. F.; Wang, W. P.; Shi, J. L.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Adv. Mater. 2019, 31, e1807789. doi: 10.1002/adma.201807789
doi: 10.1002/adma.201807789
Zhou, W.; Wang, Z.; Pu, Y.; Li, Y.; Xin, S.; Li, X.; Chen, J.; Goodenough, J. B. Adv. Mater. 2018, 31, 1805574. doi: 10.1002/adma.201805574
doi: 10.1002/adma.201805574
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022