Citation: Li Yamin, Wang Yang, Chen Hongda, Wang Yijun, Liu Yuanyuan, Pei Weihua. Development of Implantable Optrode Devices[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 191205. doi: 10.3866/PKU.WHXB201912054 shu

Development of Implantable Optrode Devices

  • Corresponding author: Pei Weihua, peiwh@semi.ac.cn
  • Received Date: 23 December 2019
    Revised Date: 24 January 2020
    Accepted Date: 24 January 2020
    Available Online: 3 March 2020

    Fund Project: The project was supported by the National Key R & D Project of China 2017YFA0701100National Natural Science Foundation of China 61634006Strategic Priority Research Program of Chinese Academy of Science XDB32030100Strategic Priority Research Program of Chinese Academy of Science XDB32040200National Natural Science Foundation of China 61671424The project was supported by the National Key R & D Project of China 2016YFB0402405National Natural Science Foundation of China 61335010The project was supported by the National Key R & D Project of China (2017YFA0205903, 2017YFA0701100, 2016YFB0402405), National Natural Science Foundation of China (61634006, 61335010, 61671424), Strategic Priority Research Program of Chinese Academy of Science (XDB32030100, XDB32040200)The project was supported by the National Key R & D Project of China 2017YFA0205903

  • Optogenetics transforms specific types of neurons through genetic engineering to achieve the cell membrane expression of photosensitive channel protein. When a specific wavelength of light irradiates the photosensitive channel protein, the cell is either excited or inhibited. Optogenetics provides a precise and fast method to control the activity of individual neurons for neuroscience research, which has gained increasing attention as a means of neural regulation. To realize the photogenetic regulation of neurons, light should be introduced into the brain safely and efficiently. Thus, specialized photoelectric devices are needed. Optrode plays a significant role in the application of optogenetics tools, which is the technical basis for the application of optogenetics. Optrode is a kind of implantable neural interface device. It can introduce light into the brain to regulate neural activity and record the changes of neural electrical signals under the control of lights. As the research of optogenetic technology continues, More and more optrodes are being developed and applied in the study of neuroscience and diseases, such as neural circuit, cognition and memory, epilepsy, and sensory function damage. The combination of optrode with optogenetic technologies provides various developmental modes in terms of material selection, device structure, light supply method, and integrated ways. The difficulty in fabricating optrodes lies in performing light stimulation and electrical signal recording without causing the immune rejection of the test animal and affecting its normal physiological activities simultaneously. In this study, based on structural characteristics and manufacturing process, optrodes are classified into two categories: waveguide-based and micro-light emitting diode-based. Subsequently, based on manufacturing process and light supply method, waveguide-based optrodes are further divided into optical fiber-optrode, optical waveguide-optrode based on MENS technology, and LD/LED waveguide-optrode. Similarly, micro-light emitting diode-based optrodes are divided into hard μLED optrode and soft μLED optrode. The advantages and disadvantages of different types of optrodes, as well as the evolution direction, are reviewed and summarized. Additionally, problems with existing optrodes, such as signal quality, biocompatibility, and device reliability, are discussed. Further, the ideal form of the device is presented as possessing the following characteristics: μLED and recording electrode integrated on flexible substrate, small size, high spatial resolution, high biocompatibility, wireless energy supply, wireless data transmission, etc. As optrode technologies are continuously updated, in the application of optogenetic technologies, research on brain neural circuit and functional structure will be better studied, and various nerve diseases will be gradually tamed.
  • 加载中
    1. [1]

      Aldaoud, A.; Soto-Breceda, A.; Tong, W.; Conductier, G.; Tonta, M. A.; Coleman, H. A.; Parkington, H. C.; Clarke, I.; Redoute, J. M.; Garrett, D. J.; et al. Sens. Actuator A-Phys. 2018, 271, 201. doi: 10.1016/j.sna.2017.12.051  doi: 10.1016/j.sna.2017.12.051

    2. [2]

      Richner, T. J.; Thongpang, S.; Brodnick, S. K.; Schendel, A. A.; Falk, R. W.; Krugner-Higby, L. A.; Pashaie, R.; Williams, J. C. J. Neural Eng. 2014, 11, 016010. doi: 10.1088/1741-2560/11/1/016010  doi: 10.1088/1741-2560/11/1/016010

    3. [3]

      Butovas, S.; Schwarz, C. J. Neurophysiol. 2003, 90, 3024. doi: 10.1152/jn.00245.2003  doi: 10.1152/jn.00245.2003

    4. [4]

      Delbeke, J.; Hoffman, L.; Mols, K.; Braeken, D.; Prodanov, D. Front. Neurosci. 2017, 11, 20. doi: 10.3389/fnins.2017.00663  doi: 10.3389/fnins.2017.00663

    5. [5]

      Yang, W.; Yuste, R. Nat. Methods. 2017, 14, 752. doi: 10.1038/nmeth0717-752b  doi: 10.1038/nmeth0717-752b

    6. [6]

      Holtmaat, A.; Svoboda, K. Nat. Rev. Neurosci. 2009, 10, 1 doi: 10.1038/nrn2721  doi: 10.1038/nrn2721

    7. [7]

      Stam, C. J.; Jones, B. F.; Nolte, G.; Breakspear, M. Scheltens, P. Cereb. Cortex. 2007, 17, 92. doi: 10.1093/cercor/bhj127  doi: 10.1093/cercor/bhj127

    8. [8]

      Shirai, F.; Hayashi-Takagi, A. Psychiatry Clin Neurosci. 2017, 71, 363. doi: 10.1111/pcn.12516  doi: 10.1111/pcn.12516

    9. [9]

      Tung, J. K.; Berglund, K.; Gross, R. E. Brain Stimul. 2016, 9, 801. doi: 10.1016/j.brs.2016.06.055  doi: 10.1016/j.brs.2016.06.055

    10. [10]

      Tonnesen, J. Behav Brain Res. 2013, 255, 35. doi: 10.1016/j.bbr.2013.07.007  doi: 10.1016/j.bbr.2013.07.007

    11. [11]

      Ishizuka, T.; Kakuda, M.; Araki, R.; Yawo, H. Neurosci. Res. 2006, 54, 85. doi: 10.1016/j.neures.2005.10.009  doi: 10.1016/j.neures.2005.10.009

    12. [12]

      Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Nat. Neurosci. 2005, 8, 1263. doi: 10.1038/nn1525  doi: 10.1038/nn1525

    13. [13]

      Zhang, F.; Wang, L. P.; Brauner, M.; Liewald, J. F.; Kay, K.; Watzke, N.; Wood, P. G.; Bamberg, E.; Nagel, G.; Gottschalk, A.; et al. Nature 2007, 446, 633. doi: 10.1038/nature05744  doi: 10.1038/nature05744

    14. [14]

      Chow, B. Y.; Han, X.; Dobry, A. S.; Qian, X. F.; Chuong, A. S.; Li, M. J.; Henninger, M. A.; Belfort, G. M.; Lin, Y. X.; Monahan, P. E.; et al. Nature 2010, 463, 98. doi: 10.1038/nature08652  doi: 10.1038/nature08652

    15. [15]

      Lin, J. Y. Exp. Physiol. 2011, 96, 19. doi: 10.1113/expphysiol.2009.051961  doi: 10.1113/expphysiol.2009.051961

    16. [16]

      Aravanis, A. M.; Wang, L. P.; Zhang, F.; Meltzer, L. A.; Mogri, M. Z.; Schneider, M. B.; Deisseroth, K. J. Neural. Eng. 2007, 4, S143. doi: 10.1088/1741-2560/4/3/s02  doi: 10.1088/1741-2560/4/3/s02

    17. [17]

      Du, M.; Xu, X.; Yang, L.; Guo, Y.; Guan, S.; Shi, J.; Wang, J.; Fang, Y. Biosens. Bioelectron. 2018, 105, 109. doi: 10.1016/j.bios.2018.01.027  doi: 10.1016/j.bios.2018.01.027

    18. [18]

      Guo, Y.; Fang, Z.; Du, M.; Yang, L.; Shao, L.; Zhang, X.; Li, L.; Shi, J.; Tao, J.; Wang, J.; et al. Nano Res. 2018, 11, 5604. doi: 10.1007/s12274-018-2005-0  doi: 10.1007/s12274-018-2005-0

    19. [19]

      Wang, M. H.; Gu, X. W.; Ji, B. W.; Wang, L. C.; Guo, Z. J.; Yang, B.; Wang, X. L.; Li, C. Y.; Liu, J. Q. Biosens. Bioelectron. 2019, 131, 9. doi: 10.1016/j.bios.2019.01.019  doi: 10.1016/j.bios.2019.01.019

    20. [20]

      Gradinaru, V.; Thompson, K. R.; Zhang, F.; Mogri, M.; Kay, K.; Schneider, M. B.; Deisseroth, K. J. Neurosci. 2007, 27, 14231. doi: 10.1523/jneurosci.3578-07.2007  doi: 10.1523/jneurosci.3578-07.2007

    21. [21]

      Wang, J.; Wagner, F.; Borton, D. A.; Zhang, J. Y.; Ozden, I.; Burwell, R. D.; Nurmikko, A. V.; van Wagenen, R.; Diester, I.; Deisseroth, K. J. Neural. Eng. 2012, 9, 14. doi: 10.1088/1741-2560/9/1/016001  doi: 10.1088/1741-2560/9/1/016001

    22. [22]

      Royer, S.; Zemelman, B. V.; Barbic, M.; Losonczy, A.; Buzsaki, G.; Magee, J. C. Eur. J. Neurosci. 2010, 31, 2279. doi: 10.1111/j.1460-9568.2010.07250.x  doi: 10.1111/j.1460-9568.2010.07250.x

    23. [23]

      Chen, S.; Pei, W.; Gui, Q.; Chen, Y.; Zhao, S.; Wang, H.; Chen, H. J. Neural. Eng. 2013, 10, 046020. doi: 10.1088/1741-2560/10/4/046020  doi: 10.1088/1741-2560/10/4/046020

    24. [24]

      Wang, F.; Guo, D. M.; Xie, Y. X.; Zhang, L.; Pei, W. H.; Chen, H. D. Optoelectron. Lett. 2018, 14, 271. doi: 10.1007/s11801-018-8030-0  doi: 10.1007/s11801-018-8030-0

    25. [25]

      Sridharan, A.; Rajan, S. D.Muthuswamy, J. J. Neural. Eng. 2013, 10, 16. doi: 10.1088/1741-2560/10/6/066001  doi: 10.1088/1741-2560/10/6/066001

    26. [26]

      Segev, E.; Reimer, J.; Moreaux, L. C.; Fowler, T. M.; Chi, D.; Sacher, W. D.; Lo, M.; Deisseroth, K.; Tolias, A. S.; Faraon, A.; et al. Neurophotonics 2017, 4, 15. doi: 10.1117/1.NPh.4.1.011002  doi: 10.1117/1.NPh.4.1.011002

    27. [27]

      Wu, F.; Stark, E.; Im, M.; Cho, I. J.; Yoon, E. S.; Buzsaki, G.; Wise, K. D.; Yoon, E. J. Neural. Eng. 2013, 10, 056012. doi: 10.1088/1741-2560/10/5/056012  doi: 10.1088/1741-2560/10/5/056012

    28. [28]

      Cho, I. J.; Baac, H. W; Yoon, E. A 16-Site Neural Probe Integrated with a Waveguide for Optical Stimulation, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China, Jan 24-28, 2010, Eds.; IEEE, 2010

    29. [29]

      Im, M.; Cho, I. J.; Wu, F.; Wise, K. D.; Yoon, E. Neural probes integrated with optical mixer/splitter waveguides and multiple stimulation sites, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, Jan 23-27, 2011, Eds.; IEEE, 2010

    30. [30]

      Son, Y.; Lee, H. J.; Kim, J.; Shin, H.; Choi, N.; Lee, C. J.; Yoon, E. S.; Yoon, E.; Wise, K. D.; Kim, T. G.; et al. Sci. Rep. 2015, 5, 11. doi: 10.1038/srep15466  doi: 10.1038/srep15466

    31. [31]

      Stark, E.; Koos, T.; Buzsaki, G. J. Neurophysiol. 2012, 108, 349. doi: 10.1152/jn.00153.2012  doi: 10.1152/jn.00153.2012

    32. [32]

      Kampasi, K.; Stark, E.; Seymour, J.; Na, K.; Winful, H. G.; Buzaski, G.; Wise, K. D.; Yoon, E. Sci. Rep. 2016, 6, 13. doi: 10.1038/srep30961  doi: 10.1038/srep30961

    33. [33]

      Kampasi, K.; English, D. F.; Seymour, J.; Stark, E.; McKenzie, S.; Voroslakos, M.; Buzsaki, G.; Wise, K. D.; Yoon, E. Microsyst. Nanoeng. 2018, 4, 16. doi: 10.1038/s41378-018-0009-2  doi: 10.1038/s41378-018-0009-2

    34. [34]

      Libbrecht, S.; Hoffman, L.; Welkenhuysen, M.; Van den Haute, C.; Baekelandt, V.; Braeken, D.; Haesler, S. J. Neurophysiol. 2018, 120, 149. doi: 10.1152/jn.00888.2017  doi: 10.1152/jn.00888.2017

    35. [35]

      Sung, H. K.; Lee, H. K.; Wang, C.; Kim, N. Y. J. Nanosci. Nanotechnol. 2017, 17, 2582. doi: 10.1166/jnn.2017.13071  doi: 10.1166/jnn.2017.13071

    36. [36]

      McAlinden, N.; Gu, E.; Dawson, M. D.; Sakata, S.; Mathieson, K. Front. NeuralCircuits. 2015, 9, 25. doi: 10.3389/fncir.2015.00025  doi: 10.3389/fncir.2015.00025

    37. [37]

      Li, L.; Liu, C.; Su, Y.; Bai, J.; Wu, J.; Han, Y.; Hou, Y.; Qi, S.; Zhao, Y.; Ding, H.; et al. Adv. Mater. Technol. 2018, 3, 1700239. doi: 10.1002/admt.201700239  doi: 10.1002/admt.201700239

    38. [38]

      Dong, N.; Berlinguer-Palmini, R.; Soltan, A.; Ponon, N.; O'Neil, A.; Travelyan, A.; Maaskant, P.; Degenaar, P.; Sun, X. H. J. Biophotonics. 2018, 11, 17. doi: 10.1002/jbio.201700358  doi: 10.1002/jbio.201700358

    39. [39]

      Yoo, S.; Lee, H.; Jun, S. B.; Kim, Y. K.; Ji, C. H. Sens. Actuat. A: Phys. 2018, 273, 276. doi: 10.1016/j.sna.2018.02.039  doi: 10.1016/j.sna.2018.02.039

    40. [40]

      Wu, F.; Stark, E.; Ku, P. C.; Wise, K. D.; Buzsaki, G.Yoon, E. Neuron 2015, 88, 1136. doi: 10.1016/j.neuron.2015.10.032  doi: 10.1016/j.neuron.2015.10.032

    41. [41]

      Zhang, H.; Pei, W. H.; Yang, X. W.; Guo, X. H.; Xing, X.; Gui, Q.; Chen, H. D. A Sapphire based monolithic integrated optrode. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, Aug. 16-20 2016; Eds; IEEE: 2016

    42. [42]

      Mendrela, A. E.; Kim, K.; English, D.; McKenzie, S.; Seymour, J. P.; Buzsaki, G.; Yoon, E. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1065. doi: 10.1109/tbcas.2018.2852267  doi: 10.1109/tbcas.2018.2852267

    43. [43]

      Yamagishi, K.; Kirino, I.; Takahashi, I.; Amano, H.; Takeoka, S.; Morimoto, Y.; Fujie, T. Nat. Biomed Eng. 2019, 3, 27. doi: 10.1038/s41551-018-0261-7  doi: 10.1038/s41551-018-0261-7

    44. [44]

      Zhao, Y.; Liu, C.; Liu, Z.; Luo, W.; Li, L.; Cai, X.; Liang, D.; Su, Y.; Ding, H.; Wang, Q.; et al. IEEE. T. Electron. Dev. 2019, 66, 785. doi: 10.1109/ted.2018.2882397  doi: 10.1109/ted.2018.2882397

    45. [45]

      Lu, L. Y.; Gutruf, P.; Xia, L.; Bhatti, D. L.; Wang, X. Y.; Vazquez-Guardado, A.; Ning, X.; Shen, X. R.; Sang, T.; Ma, R. X.; et al. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E1374. doi: 10.1073/pnas.171872111  doi: 10.1073/pnas.171872111

    46. [46]

      Cheng, T.; Luo, X. B.; Huang, S. Y.; Liu, S. Int. J. Therm. Sci. 2010, 49, 196. doi: 10.1016/j.ijthermalsci.2009.07.010  doi: 10.1016/j.ijthermalsci.2009.07.010

    47. [47]

      McAlinden, N.; Massoubre, D.; Richardson, E.; Gu, E.; Sakata, S.; Dawson, M. D.; Mathieson, K. Opt. Lett. 2013, 38, 992. doi: 10.1364/ol.38.000992  doi: 10.1364/ol.38.000992

    48. [48]

      Zhao, Z. T.; Li, X.; He, F.; Wei, X. L.; Lin, S. Q.; Xie, C. J. Neural. Eng. 2019, 16, 11. doi: 10.1088/1741-2552/ab05b6  doi: 10.1088/1741-2552/ab05b6

    49. [49]

      Zhao, Z. T.; Luau, L.; Wei, X. L.; Zhu, H. L.; Li, X.; Lin, S. Q.; Siegel, J. J.; Chitwood, R. A.; Xie, C. Nano Lett. 2017, 17, 4588. doi: 10.1021/acs.nanolett.7b00956  doi: 10.1021/acs.nanolett.7b00956

    50. [50]

      Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H.; et al. Science 2013, 340, 211. doi: 10.1126/science.1232437  doi: 10.1126/science.1232437

    51. [51]

      Kwon, K. Y.; Sirowatka, B.; Weber, A.; Li, W. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 593. doi: 10.1109/TBCAS.2013.2282318  doi: 10.1109/TBCAS.2013.2282318

    52. [52]

      Ji, B.; Wang, M.; Kang, X.; Gu, X.; Li, C.; Yang, B.; Wang, X.; Liu, J. IEEE T. Electron. Dev. 2017, 64, 2008. doi: 10.1109/ted.2016.2645860  doi: 10.1109/ted.2016.2645860

    53. [53]

      Reddy, J. W.; Kimukin, I.; Stewart, L. T.; Ahmed, Z.; Barth, A. L.; Towe, E.; Chamanzar, M. Front Neurosci 2019, 13, 745. doi: 10.3389/fnins.2019.00745  doi: 10.3389/fnins.2019.00745

    54. [54]

      Chen, Y. F.; Pei, W. H.; Chen, S. Y.; Wu, X.; Zhao, S. S.; Wang, H.; Chen, H. D. Sens. Actuator B-Chem. 2013, 188, 747. doi: 10.1016/j.snb.2013.07.075  doi: 10.1016/j.snb.2013.07.075

    55. [55]

      Woeppel, K. M.; Zheng, X. S.; Schulte, Z. M.; Rosi, N. L.; Cui, X. Y. T. Adv. Healthc. Mater. 2019, 8, 14. doi: 10.1002/adhm.201900622  doi: 10.1002/adhm.201900622

    56. [56]

      Lee, S.; Eom, T.; Kim, M. K.; Yang, S. G.; Shim, B. S. Electrochim. Acta 2019, 3 (13), 79. doi: 10.1016/j.electacta.2019.04.099  doi: 10.1016/j.electacta.2019.04.099

    57. [57]

      Rui, Y. F.; Liu, J. Q.; Wang, Y. J.; Yang, C. S. Microsyst. Technol. 2011, 17, 437. doi: 10.1007/s00542-011-1279-x  doi: 10.1007/s00542-011-1279-x

    58. [58]

      Wang, L. C.; Wang, M. H.; Ge, C. F.; Ji, B. W.; Guo, Z. J.; Wang, X. L.; Yang, B.; Li, C. Y.; Liu, J. Q. Biosens. Bioelectron. 2019, 145, 111661. doi: 10.1016/j.bios.2019.111661  doi: 10.1016/j.bios.2019.111661

    59. [59]

      Zhang, H.; Pei, W. H.; Zhao, S. S.; Yang, X. W.; Liu, R. C.; Liu, Y. Y.; Wu, X.; Guo, D. M.; Gui, Q.; Guo, X. H.; et al. Sci. China-Technol. Sci. 2016, 59, 1399. doi: 10.1007/s11431-016-6099-x  doi: 10.1007/s11431-016-6099-x

    60. [60]

      Yu, X.; Su, J. Y.; Guo, J. Y.; Zhang, X. H.; Li, R. H.; Chai, X. Y.; Chen, Y.; Zhang, D. G.; Wang, J. G.; Sui, X. H.; et al. J. Neurosci. Methods 2019, 328, 108450. doi: 10.1016/j.jneumeth.2019.108450  doi: 10.1016/j.jneumeth.2019.108450

    61. [61]

      Ji, B. W.; Wang, M. H.; Ge, C. F.; Xie, Z. Q.; Guo, Z. J.; Hong, W.; Gu, X. W.; Wang, L. C.; Yi, Z. R.; Jiang, C. P.; et al. Biosens. Bioelectron. 2019, 135, 181. doi: 10.1016/j.bios.2019.04.025  doi: 10.1016/j.bios.2019.04.025

    62. [62]

      Packer, A. M.; Roska, B.; Hausser, M. Nat. Neurosci. 2013, 16, 805. doi: 10.1038/nn.3427  doi: 10.1038/nn.3427

    63. [63]

      Liu, X.; Lu, Y. C.; Iseri, E.; Shi, Y. H.; Kuzum, D. Front. Neurosci. 2018, 12, 13. doi: 10.3389/fnins.2018.00132  doi: 10.3389/fnins.2018.00132

    64. [64]

      Gross, G. W.; Wen, W. Y.; Lin, J. W. J. Neurosci. Methods 1985, 15, 243. doi: 10.1016/0165-0270(85)90105-0  doi: 10.1016/0165-0270(85)90105-0

    65. [65]

      Zhang, J.; Liu, X. J.; Xu, W. J.; Luo, W. H.; Li, M.; Chu, F. B.; Xu, L.; Cao, A. Y.; Guan, J. S.; Tang, S. M.; et al. Nano Lett. 2018, 18, 2903. doi: 10.1021/acs.nanolett.8b00087  doi: 10.1021/acs.nanolett.8b00087

    66. [66]

      Kim, K.; English, D.; McKenzie, S.; Wu., F.; Stark, E.; Seymour, J.; Kul, P. C.; Wise, K.; Buzsaki, G.; Yoon, E. GaN-on-Si μLED optoelectrodes for high-spatiotemporal-accuracy optogenetics in freely behaving animals. 2016 Ieee International Electron Devices Meeting, San Francisco, USA, Dec 3-7. 2016; Eds; IEEE: 2016.

    67. [67]

      Guo, Z.; Ji, B.; Wang, M.; Ge, C.; Wang, L.; Gu, X.; Yang, B.; Wang, X.; Li, C.; Liu, J. IEEE Electron Device Lett. 2019, 40, 1190. doi: 10.1109/led.2019.2915323  doi: 10.1109/led.2019.2915323

    68. [68]

      Polikov, V. S.; Tresco, P. A.; Reichert, W. M. J. Neurosci. Methods 2005, 148, 1. doi: 10.1016/j.jneumeth.2005.08.015  doi: 10.1016/j.jneumeth.2005.08.015

    69. [69]

      Henze, D. A.; Borhegyi, Z.; Csicsvari, J.; Mamiya, A.; Harris, K. D.; Buzsaki, G. J. Neurophysiol. 2000, 84, 390.  doi: 10.1152/jn.2000.84.1.390

    70. [70]

      Wang, L. L.; Xie, Z. X.; Zhong, C.; Tang, Y. Q.; Ye, F. M.; Wang, L. P.; Lu, Y. Acta Phys. -Chim. Sin. 2020, 36, 1909035.  doi: 10.3866/PKU.WHXB201909035

    71. [71]

      Elwassif, M. M.; Kong, Q. J.; Vazquez, M.; Bikson, M. J .J. Neural Eng. 2006, 3, 306. doi: 10.1088/1741-2560/3/4/008  doi: 10.1088/1741-2560/3/4/008

    72. [72]

      Ji, B.; Guo, Z.; Wang, M.; Yang, B.; Wang, X.; Li, W.; Liu, J. Microsyst. Nanoeng 2018, 4, 27. doi: 10.1038/s41378-018-0027-0  doi: 10.1038/s41378-018-0027-0

    73. [73]

      Ayub, S.; Gentet, L. J.; Fiath, R.; Schwaerzle, M.; Borel, M.; David, F.; Bartho, P.; Ulbert, I.; Paul, O.; Ruther, P. Biomed. Microdevices 2017, 19, 12. doi: 10.1007/s10544-017-0190-3  doi: 10.1007/s10544-017-0190-3

  • 加载中
    1. [1]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    13. [13]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

Metrics
  • PDF Downloads(19)
  • Abstract views(1209)
  • HTML views(383)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return