Citation: Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 191205. doi: 10.3866/PKU.WHXB201912052 shu

Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells

  • Corresponding author: Junliang Zhang, junliang.zhang@sjtu.edu.cn
  • Received Date: 23 December 2019
    Revised Date: 15 January 2020
    Accepted Date: 20 January 2020
    Available Online: 5 March 2020

    Fund Project: the National Natural Science Foundation of China 21706158the National Natural Science Foundation of China 21533005

  • Although there has been great progress, the commercialization of proton exchange membrane fuel cells (PEMFCs) is still hindered by high cost due to the use of Pt catalysts. Furthermore, structural improvement of the catalyst layers is limited by inadequate studies of the ultrathin perfluorosulfonic acid ionomer (e.g., Nafion ionomer) film in the catalyst layers. During the preparation of the catalyst ink, the dispersion solvent affects the morphology of Nafion ionomers, which affects the microstructure and proton conduction behavior of the Nafion thin film wrapped on the surface of the catalyst particles after the catalyst layer is formed. To simulate the aggregation of ionomers in the catalyst layer, a self-assembly technology was used to obtain nanoscale Nafion thin films with precise and controllable thickness on a SiO2 model substrate. The proton conductivity and microstructure of the Nafion thin films were obtained through electrochemical impedance spectroscopy and a series of micro-characterization methods. Furthermore, the relationship between proton conduction behavior within ultrathin Nafion films and colloidal morphology in Nafion solution was studied using different organic solvents. The goal was to explore and establish the microstructure model of nanoscale Nafion thin films through micro-characterization technologies, such as nuclear magnetic resonance and dynamic light scattering. It was found that at the nanoscale, Nafion thin films (~40 nm) result in low proton conductivity; an order of magnitude lower than that of bulk membranes (~10–100 μm). However, replacing iso-propanol with n-butanol (which has a lower dielectric constant) as the dispersion media of the Nafion ionomer improved the proton conductivity of the Nafion thin films. This is because Nafion in solvents with a lower dielectric constant possesses higher main chain solubility and mobility. Thus, Nafion molecules more easily aggregate into large rod-shaped micelles, which is beneficial to the construction of proton conduction channels after the self-assembly process. Furthermore, the electrostatic force between Nafion aggregates and the substrate in solvents with lower dielectric constant is smaller. This means more sulfonic groups are involved in the formation of proton conduction channels that in turn improve the proton conductivity of the Nafion thin film. In general, Nafion in solvents with lower dielectric constant leads to a structure that can facilitate proton conduction. This study provides guidance for optimizing the structure of ultrathin Nafion films and improving the proton conduction in the catalyst layers of PEMFCs.
  • 加载中
    1. [1]

      DOE Hydrogen and Fuel Cells Program Record 2016[M]. U. S. Department of Energy. 2011.

    2. [2]

      Farhat, Z. N. J. Power Sources 2004, 138 (1), 68. doi: 10.1016/j.jpowsour.2004.05.055  doi: 10.1016/j.jpowsour.2004.05.055

    3. [3]

      Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Appl. Catal. B: Environ. 2005, 56 (1-2), 9. doi: 10.1016/j.apcatb.2004.06.021  doi: 10.1016/j.apcatb.2004.06.021

    4. [4]

      Franco, A. A.; Passot, S.; Fugier, P.; Anglade, C.; Billy, E.; Guétaz, L.; Guillet, L.; Vito, E. D.; Mailley, S. J. Electrochem. Soc. 2009, 156 (3), B410. doi: 10.1149/1.3056048  doi: 10.1149/1.3056048

    5. [5]

      Stamenković, V.; Schmidt, T. J.; Ross, P. N.; Marković, N. M. J. Phys. Chem. B 2002, 106 (46), 11970. doi: 10.1021/jp021182h  doi: 10.1021/jp021182h

    6. [6]

      Huang, X.; Zhao, Z.; Cao, L. Science 2015, 348 (6240), 1230. doi: 10.1126/science.aaa8765  doi: 10.1126/science.aaa8765

    7. [7]

      Wu, J.; Qi, L.; You, H. J. Am. Chem. Soc. 2012, 134 (29), 11880. doi: 10.1021/ja303950v  doi: 10.1021/ja303950v

    8. [8]

      Chen, C.; Kang, Y.; Huo, Z. Science 2014, 343 (6177), 1339. doi: 10.1126/science.1249061  doi: 10.1126/science.1249061

    9. [9]

      Mahmoud, M. A.; Tabor, C. E.; El-Sayed, M. A. J. Am. Chem. Soc. 2008, 130 (14), 4590. doi: 10.1021/ja710646t  doi: 10.1021/ja710646t

    10. [10]

      Shen, S.; Han, A.; Yan, X.; Chen, J.; Cheng, X.; Zhang, J. J. Electrochem. Soc. 2019, 166 (12), F724. doi: 10.1149/2.0451912jes  doi: 10.1149/2.0451912jes

    11. [11]

      Lee, S. J.; Yu, T. L.; Lin, H. L.; Liu, W. H.; Lai, C. L. Polymer 2004, 45 (8), 2853. doi: 10.1016/j.polymer.2004.01.076  doi: 10.1016/j.polymer.2004.01.076

    12. [12]

      Welch, C.; Labouriau, A.; Hjelm, R.; Orler, B.; Johnston, C.; Kim, Y. S. ACS Macro Lett. 2012, 1 (12), 1403. doi: 10.1021/mz3005204  doi: 10.1021/mz3005204

    13. [13]

      Balu, R.; Choudhury, N. R.; Meta, J. P.; Campo, L.; Rehm, C.; Hill, A. J.; Dutta, N. K. ACS Appl. Mater. Interfaces 2019, 11 (10), 9934. doi: 10.1021/acsami.8b20645  doi: 10.1021/acsami.8b20645

    14. [14]

      Kim, T.; Yoo, J. H.; Maiyalagan, T.; Yia. S. Appl. Surf. Sci. 2019, 481, 777. doi: 10.1016/j.apsusc.2019.03.113  doi: 10.1016/j.apsusc.2019.03.113

    15. [15]

      Paul, D. K.; Fraser, A.; Karan, K. Electrochem. Commun. 2011, 13 (8), 774. doi: 10.1016/j.elecom.2011.04.022  doi: 10.1016/j.elecom.2011.04.022

    16. [16]

      Modestino, M. A.; Paul, D. K.; Dishari, S.; Petrina, S. A.; Allen, F. I.; Hickner, M. A.; Karan, K.; Segalman, R. A.; Weber, A. Z. Macromolecules 2013, 46 (3), 867. doi: 10.1021/ma301999a  doi: 10.1021/ma301999a

    17. [17]

      Takasaki, M.; Kimura, K.; Kawaguchi, K.; Abe, A.; Katagiri, G. Macromolecules 2005, 38 (14), 6031. doi: 10.1021/ma047970h  doi: 10.1021/ma047970h

    18. [18]

      Kim, T.; Yoo, J. H.; Maiyalagan, T.; Yi, S. Appl. Surf. Sci. 2019, 481 (1), 777. doi: 10.1016/j.apsusc.2019.03.113  doi: 10.1016/j.apsusc.2019.03.113

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    9. [9]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    10. [10]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

Metrics
  • PDF Downloads(38)
  • Abstract views(492)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return