Citation: Wu Chuanli, Liang Wenhui, Fan Jingjing, Cao Yuxian, Wu Ping, Cai Chenxin. Regulating Electron Transport Band Gaps of Bovine Serum Albumin by Binding Hemin[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 191205. doi: 10.3866/PKU.WHXB201912050 shu

Regulating Electron Transport Band Gaps of Bovine Serum Albumin by Binding Hemin

  • Corresponding author: Cai Chenxin, cxcai@njnu.edu.cn
  • Received Date: 23 December 2019
    Revised Date: 16 January 2020
    Accepted Date: 24 January 2020
    Available Online: 3 March 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21335004, 21675088), the Natural Science Foundation of Jiangsu Province, China (BK20181382, BK20181383), and the Priority Academic Program Development of the Jiangsu Higher Education Institutions, Chinathe Natural Science Foundation of Jiangsu Province, China BK20181383the National Natural Science Foundation of China 21335004the National Natural Science Foundation of China 21675088the Natural Science Foundation of Jiangsu Province, China BK20181382

  • The small size (nanoscale) of proteins and their favorable electron transport (ETp) properties make them suitable for various types of bioelectronic devices and offer a solution for miniaturizing these devices to nanoscale dimensions. The performance of protein-based devices is predominantly affected by the ETp property of the proteins, which is largely determined by the band gaps of the proteins, i.e., the energy difference between the conduction band (CB) and valence band (VB). Regulating the protein ETp band gaps to appropriate values is experimentally demanding and hence remains a significant challenge. This study reports a facile method for modulating the ETp band gaps of bovine serum albumin (BSA), via its binding with a foreign molecule, hemin. The formation of the hemin-BSA complex was initially confirmed by theoretical simulation (molecular docking) and experimental characterization (fluorescence and absorption spectra), which indicated that the hemin is positioned inside a hydrophobic cavity formed by hydrophobic amino acid residues and near Trp213, at subdomain IIA of BSA, with no significant effects on the structure of BSA. Circular dichroism (CD) spectra indicated that the BSA conformation remains essentially unaltered following the formation of the hemin-BSA complex, as the helicities of the free BSA (non-binding) and the hemin-BSA complex were estimated to be 66% and 65%, respectively. Moreover, this structural conformation remains preserved after the hemin-BSA complex is immobilized on the Au substrate surface. The hemin-BSA complex is immobilized onto the Au substrate surface along a single orientation, via the ―SH group of Cys34 on the protein surface. Atomic force microscopy (AFM) images indicate that hemin-BSA forms a dense layer on the surface of the Au substrate with a lateral size of ~3.2‒3.7 nm, which is equivalent to the actual size of BSA, ~4.0 nm × 4.0 nm × 14.0 nm. The current-voltage (I-V) responses were measured using eutectic gallium-indium (EGaIn) as the top electrode and an Au film as the substrate electrode, revealing that the ETp processes of BSA and hemin-BSA on the Au surface have distinct semiconducting characteristics. The CB and VB were estimated by analysis of the differential conductance spectra, and for the free BSA, they were ~0.75 ± 0.04 and ~ −0.75 ± 0.08 eV, respectively, being equally distributed around the Fermi level (0 eV), with a band gap of ~1.50 ± 0.05 eV. Following hemin binding, the CB (~0.64 ± 0.06 eV) and VB (~ −0.29 ± 0.07 eV) of the protein were closer to the Fermi level, resulting in a band gap of ~0.93 ± 0.05 eV. These results demonstrated that hemin molecules can effectively regulate ETp characteristics and the transport band gap of BSA. This methodology may provide a general approach for tuning protein ETp band gaps, enabling broad variability by the preselection of binding molecules. The protein and foreign molecule complex may further serve as a suitable material for configuring nanoscale solid-state bioelectronic devices.
  • 加载中
    1. [1]

      Bostick, C. D.; Mukhopadhyay, S.; Pecht, I.; Sheves, M.; Cahen, D.; Lederman, D. Rep. Prog. Phys. 2018, 81, 026601. doi: 10.1088/1361-6633/aa85f2  doi: 10.1088/1361-6633/aa85f2

    2. [2]

      Zeng, Y.; Sun, B.; Yu. H. Y.; Wang, X.; Peng H.; Chen, Y.; Zhu, S.; Mao, S. Mater. Today Chem. 2019, 13, 18e24. doi: 10.1016/j.mtchem.2019.04.008  doi: 10.1016/j.mtchem.2019.04.008

    3. [3]

      Richter, S.; Mentovich, E.; Elnathan, R. Adv. Mater. 2018, 30, 1706941. doi: 10.1002/adma.201706941  doi: 10.1002/adma.201706941

    4. [4]

      Fereiro, J. A.; Porat, G.; Bendikov, T.; Pecht, I.; Sheves, M.; Cahen, D. J. Am. Chem. Soc. 2018, 140, 13317. doi: 10.1021/jacs.8b07742  doi: 10.1021/jacs.8b07742

    5. [5]

      Blumberger, J. Curr. Opin. Chem. Biol. 2018, 47, 24. doi: 10.1016/j.cbpa.2018.06.021  doi: 10.1016/j.cbpa.2018.06.021

    6. [6]

      Amdursky, N.; Marchak, D.; Sepunaru, L.; Pecht, I.; Sheves, M.; Cahen, D. Adv. Mater. 2014, 26, 7142. doi: 10.1002/adma.201402304  doi: 10.1002/adma.201402304

    7. [7]

      Ron, I.; Sepunaru, L.; Itzhakov, S.; Belenkova, T.; Friedman, N.; Pecht, I.; Sheves, M.; Cahen, D. J. Am. Chem. Soc. 2010, 132, 4131. doi: 10.1021/ja907328r  doi: 10.1021/ja907328r

    8. [8]

      Fereiro, J. A.; Yu, X.; Pecht, I.; Sheves, M.; Cuevas, J. C.; Cahen, D. Proc. Natl. Acad. Sci. USA 2018, 115, E4577. doi: 10.1073/pnas.1719867115  doi: 10.1073/pnas.1719867115

    9. [9]

      Metkar, S. K.; Girigoswami, K. Biocatal. Agric. Biotechnol. 2019, 17, 271. doi: 10.1016/j.bcab.2018.11.029  doi: 10.1016/j.bcab.2018.11.029

    10. [10]

      Mayorgamartinez, C. C.; Gusmao, R.; Sofer, Z.; Pumera, M. Angew. Chem. Int. Ed. 2019, 58, 134. doi: 10.1002/anie.201808846  doi: 10.1002/anie.201808846

    11. [11]

      Zhang, G. L.; Pan, X. H.; Kan, J. Q.; Zhang, J. H.; Li, Y. F. Acta Phys. -Chim. Sin. 2003, 19, 533.  doi: 10.3866/PKU.WHXB20030611

    12. [12]

      He, C. X.; Yuan, A. P.; Zhang, Q. L.; Ren, X. Z.; Li, C. H.; Liu, J. H. Acta Phys. -Chim. Sin. 2012, 28, 2721.  doi: 10.3866/PKU.WHXB201207191

    13. [13]

      Qiu, Y.; Deng, D.; Deng, Q.; Wu, P.; Zhang, H.; Cai, C. J. Mater. Chem. B 2015, 3, 4487. doi: 10.1039/C5TB00638D  doi: 10.1039/C5TB00638D

    14. [14]

      Ma, G. X.; Zhong, H.; Lu, T. H.; Xia, Y. Y. Acta Phys. -Chim. Sin. 2007, 23, 1053.  doi: 10.3866/PKU.WHXB20070717

    15. [15]

      Chen, L.; Yang, G.; Wu, P.; Cai, C. Biosens. Bioelectron. 2017, 96, 294. doi: 10.1016/j.bios.2017.05.022  doi: 10.1016/j.bios.2017.05.022

    16. [16]

      Artés, J. M.; Díez-Pérez, I.; Gorostiza, P. Nano Lett. 2012, 12, 2679. doi: 10.1021/nl2028969  doi: 10.1021/nl2028969

    17. [17]

      Hayierbiek, K.; Zhao, S. X.; Yang, Y.; Zeng, H. Acta Phys. -Chim. Sin. 2015, 31, 1715.  doi: 10.3866/PKU.WHXB201506231

    18. [18]

      Zeng H.; Liao, L. W.; Li, M. F.; Tao, Q.; Kang, J.; Chen, Y. X. Acta Phys. -Chim. Sin. 2010, 26, 3217.  doi: 10.3866/PKU.WHXB20101208

    19. [19]

      Amdursky, N.; Pecht, I.; Sheves, M.; Cahen, D. J. Am. Chem. Soc. 2012, 134, 18221. doi: 10.1021/ja308953q  doi: 10.1021/ja308953q

    20. [20]

      Amdursky, N.; Ferber, D.; Pecht, I.; Sheves, M.; Cahen, D. Phys. Chem. Chem. Phys. 2013, 15, 17142. doi: 10.1039/C3CP52885E  doi: 10.1039/C3CP52885E

    21. [21]

      Mentovich, E.; Belgorodsky, B.; Gozin, M.; Richter, S.; Cohen, H. J. Am. Chem. Soc. 2012, 134, 8468. doi: 10.1021/ja211790u  doi: 10.1021/ja211790u

    22. [22]

      Beilis, E.; Horowitz, Y.; Givon, A.; Somorjai, G.A.; Cohen, H.; Richter, S. J. Phys. Chem. C 2017, 121, 9579. doi: 10.1021/acs.jpcc.7b01355  doi: 10.1021/acs.jpcc.7b01355

    23. [23]

      Wang, Q.; Xu, W.; Wu, P.; Zhang, H.; Cai, C.; Zhao, B. J. Phys. Chem. B 2010, 114, 12754. doi: 10.1021/jp106214v  doi: 10.1021/jp106214v

    24. [24]

      Qian, Y.; Xu, X.; Wang, Q.; Wu, P.; Zhang, H.; Cai, C. Phys. Chem. Chem. Phys. 2013, 15, 16941. doi: 10.1039/C3CP52352G  doi: 10.1039/C3CP52352G

    25. [25]

      Bera, S.; Kolay, J.; Banerjee, S.; Mukhopadhyay, R. Langmuir 2017, 33, 1951. doi: 10.1021/acs.langmuir.6b04120  doi: 10.1021/acs.langmuir.6b04120

    26. [26]

      Rakshit, T.; Mukhopadhyay, R. Langmuir 2011, 27, 9681. doi: 10.1021/la202045a  doi: 10.1021/la202045a

    27. [27]

      Liang, W.; Wu, C.; Cai, Z.; Sun, Y.; Zhang, H.; Wu, P.; Cai, C. Chem. Commun. 2019, 55, 2853. doi: 10.1039/C9CC00688E  doi: 10.1039/C9CC00688E

    28. [28]

      Spahr, P. F.; Edsall, J. T. J. Biol. Chem. 1964, 239, 850.

    29. [29]

      Castañeda Ocampo, O. E.; Gordiichuk, P.; Catarci, S.; Gautier, D. A.; Herrmann, A.; Chiechi, R. C. J. Am. Chem. Soc. 2015, 137, 8419. doi: 10.1021/jacs.5b01241  doi: 10.1021/jacs.5b01241

    30. [30]

      Setty Venkat, A.; Corni, S.; Felice, R. D. Small 2007, 3, 1431. doi: 10.1002/smll.200700001  doi: 10.1002/smll.200700001

    31. [31]

      Bujacz, A. Acta Crystallogr. D 2012, 68, 1278. doi: 10.1107/S0907444912027047  doi: 10.1107/S0907444912027047

    32. [32]

      Rombouts, I.; Lagrain, B.; Scherf, K. A.; Lambrecht, M. A.; Koehler, P.; Delcour, J. A. Sci. Rep. 2015, 5, 12210. doi: 10.1038/srep12210  doi: 10.1038/srep12210

    33. [33]

      Seitz, O.; Vilan, A.; Cohen, H.; Chan, C.; Hwang, J.; Kahn, A. A.; Cahen, D. J. Am. Chem. Soc. 2007, 129, 7494. doi: 10.1021/ja071960p  doi: 10.1021/ja071960p

    34. [34]

      Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Angew. Chem. Int. Ed. 2008, 47, 142. doi: 10.1002/anie.200703642  doi: 10.1002/anie.200703642

    35. [35]

      Adams, P. A.; Berman, M. C. Biochem. J. 1980, 191, 95. doi: 10.1042/bj1910095  doi: 10.1042/bj1910095

    36. [36]

      Zunszain, P. A.; Ghuman, J.; Komatsu, T.; Tsuchida, E.; Curry, S. BMC Struct. Biol. 2003, 3, 7. doi: 10.1186/1472-6807-3-7  doi: 10.1186/1472-6807-3-7

    37. [37]

      Makarska-Bialokoz, M. Spectrochim. Acta Part A: Mol. Biomol. Spectro. 2018, 193, 23. doi: 10.1016/j.saa.2017.11.063  doi: 10.1016/j.saa.2017.11.063

    38. [38]

      Guo, Y.; Deng, L.; Li, J.; Guo, S.; Wang, E.; Dong, S. ACS Nano 2011, 5, 1282. doi: 10.1021/nn1029586  doi: 10.1021/nn1029586

    39. [39]

      Xu, X.; Wu, P.; Xu, W.; Shao, Q.; An, L.; Zhang, H.; Cai, C. Phys. Chem. Chem. Phys. 2012, 14, 5824. doi: 10.1039/c2cp24121h  doi: 10.1039/c2cp24121h

    40. [40]

      Shao, Q.; Wu, P.; Xu, X.; Zhang, H.; Cai, C. Phys. Chem. Chem. Phys. 2012, 14, 9076. doi: 10.1039/c2cp40654c  doi: 10.1039/c2cp40654c

    41. [41]

      Beilis, E.; Belgorodsky, B.; Fadeev, L.; Cohen, H.; Richter, S. J. Am. Chem. Soc. 2014, 136, 6151. doi: 10.1021/ja410754t  doi: 10.1021/ja410754t

    42. [42]

      Varnholt, B.; Oulevey, P.; Luber, S.; Kumara, C.; Dass, A.; Burgi, T. J. Phys. Chem. C 2014, 118, 9604. doi: 10.1021/jp502453q  doi: 10.1021/jp502453q

    43. [43]

      Yamada, T. K.; Bischoff, M. M.; Mizoguchi, T.; van Kempen, H. Surf. Sci. 2002, 516, 179. doi: 10.1016/S0039-6028(02)02032-0  doi: 10.1016/S0039-6028(02)02032-0

    44. [44]

      Yamada, T. K.; Bischoff, M. M.; Heijnen, G. M.; Mizoguchi, T.; van Kempen, H. Phys. Rev. Lett. 2003, 90, 056803. doi: 10.1103/PhysRevLett.90.056803  doi: 10.1103/PhysRevLett.90.056803

    45. [45]

      Ukraintsev, V. A. Phys. Rev. B 1996, 53, 11176. doi: 10.1103/PhysRevB.53.11176  doi: 10.1103/PhysRevB.53.11176

  • 加载中
    1. [1]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    2. [2]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    3. [3]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    4. [4]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    5. [5]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    6. [6]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    7. [7]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    8. [8]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    9. [9]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    10. [10]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    11. [11]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    12. [12]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    13. [13]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    14. [14]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    15. [15]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    16. [16]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    17. [17]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    18. [18]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    19. [19]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    20. [20]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

Metrics
  • PDF Downloads(8)
  • Abstract views(817)
  • HTML views(220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return