Citation: Zhiliang Jin, Yanbing Li, Xuqiang Hao. Ni, Co-Based Selenide Anchored g-C3N4 for Boosting Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191203. doi: 10.3866/PKU.WHXB201912033 shu

Ni, Co-Based Selenide Anchored g-C3N4 for Boosting Photocatalytic Hydrogen Evolution

  • Corresponding author: Yanbing Li, 1757039358@qq.com Xuqiang Hao, haoxuqiang@126.com
  • Received Date: 11 December 2019
    Revised Date: 5 January 2020
    Available Online: 3 February 2020

    Fund Project: the Chinese National Natural Science Foundation 21862002the Chinese National Natural Science Foundation 41663012the New Technology and System for Clean Energy Catalytic Production, Major Scientific Project of North Minzu University ZDZX201803

  • Developing novel and efficient catalysts is a significant way to break the bottleneck of low separation and transfer efficiency of charge carriers in pristine photocatalysts. Here, two fresh photocatalysts, g-C3N4@Ni3Se4 and g-C3N4@CoSe2 hybrids, are first synthesized by anchoring Ni3Se4 and CoSe2 nanoparticles on the surface of well-dispersed g-C3N4 nanosheets. The resulting materials show excellent performance for photocatalytic in situ hydrogen generation. Pristine g-C3N4 has poor photocatalytic hydrogen evolution activity (about 1.9 μmol·h-1) because of the rapid recombination of electron-hole pairs. However, the hydrogen generation activity is well improved after growing Ni3Se4 and CoSe2 on the surface of g-C3N4, owing to the unique effect of these selenides in accelerating the separation and migration of charge carriers. The hydrogen production activities of G-C3N4@Ni3Se4 and g-C3N4@CoSe2 are about 16.4 μmol·h-1 and 25.6 μmol·h-1, which are 8-fold and 13-fold that of pristine g-C3N4, respectively. In detail, coupling Ni3Se4 and CoSe2 with g-C3N4 greatly improves the light absorbance density and extends the light response region. The photoluminescence intensity of the photoexcited Eosin Y dye in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is weaker than that in the presence of pure g-C3N4. On the other hand, the upper limit of the electron-transfer rate constants in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is greater than that in the presence of pure g-C3N4. Among the g-C3N4@Ni3Se4@FTO, g-C3N4@CoSe2@FTO, and g-C3N4@FTO electrodes, the g-C3N4@FTO electrode has the lowest photocurrent density and the highest electrochemical impedance, implying that the introduction of CoSe2 and Ni3Se4 onto the surface of g-C3N4 enhances the separation and transfer efficiency of photogenerated charge carriers. In other words, the formation of two star metals selenide based on g-C3N4 can efficiently inhibit the recombination of photogenerated charge carriers and accelerate photocatalytic water splitting to generate H2. Meanwhile, the right shift of the absorption band edge effectively reduces the transition threshold of the photoexcited electrons from the valence band to the conduction band. In addition, the more negative zeta potential for the g-C3N4@Ni3Se4 and g-C3N4@CoSe2 catalysts as compared with that for pure g-C3N4 leads to a notable enhancement in the adsorption of protons by the sample surface. Moreover, the results of density functional theory calculations indicate that the hydrogen adsorption energy of the N sites in g-C3N4 is -0.22 eV; further, the hydrogen atoms are preferentially adsorbed at the bridge site of two selenium atoms to form a Se―H―Se bond, and the adsorption energy is 1.53 eV. In-depth characterization has been carried out by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, transient photocurrent measurements, and Fourier transform infrared spectroscopy; the results of these experiments are in good agreement with one another.
  • 加载中
    1. [1]

      Fang, Y. X.; Xu, Y. T.; Li, X. C.; Ma, Y. W.; Wang, X. C. Angew. Chem. Int. Edit. 2018, 57, 9749. doi: 10.1002/anie.201804530  doi: 10.1002/anie.201804530

    2. [2]

      Cui, Y.; Pan, Y. X.; Qin, H. L.; Cong, H. P.; Yu, S. H. Small Methods 2018, 2, 1800029. doi: 10.1002/smtd.201800029  doi: 10.1002/smtd.201800029

    3. [3]

      Batmunkh, M.; Shrestha, A.; Bat-Erdene, M.; Nine, M. J.; Shearer, C. J.; Gibson, C. T.; Slattery, A. D.; Tawfik, S. A.; Ford, M. J.; Dai, S.; et al. Angew. Chem. Int. Edit. 2018, 57, 2644. doi: 10.1002/anie.201712280  doi: 10.1002/anie.201712280

    4. [4]

      Zhang, F.; Zhuang, H. Q.; Song, J.; Men, Y. L.; Pan, Y. X.; Yu, S. H. Appl. Catal. B: Environ. 2018, 226, 103. doi: 10.1016/j.apcatb.2017.12.046  doi: 10.1016/j.apcatb.2017.12.046

    5. [5]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Appl. Catal. B: Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    6. [6]

      Zheng, M.; Cao, X. H.; Ding, Y.; Tian, T.; Lin, J. Q. J. Catal. 2018, 363, 109. doi: 10.1016/j.jcat.2018.04.022  doi: 10.1016/j.jcat.2018.04.022

    7. [7]

      Nocera, D. G. Acc. Chem. Res. 2017, 50, 616. doi: 10.1021/acs.accounts.6b00615  doi: 10.1021/acs.accounts.6b00615

    8. [8]

      Zheng, M.; Ding, Y.; Yu, L.; Du, X. Q.; Zhao, Y. K. Adv. Funct. Mater. 2017, 27, 1605846. doi: 10.1002/adfm.201605846  doi: 10.1002/adfm.201605846

    9. [9]

      Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; Hare, D. O.; Zhang, T. R. Adv. Mater. 2017, 29, 1703828. doi: 10.1002/adma.201703828  doi: 10.1002/adma.201703828

    10. [10]

      Li, H.; Sun, Y.; Yuan, Z. G.; Zhu, Y. P.; Ma, T. Y. Angew. Chem. Int. Edit. 2018, 57, 3222. doi: 10.1002/anie.201712925  doi: 10.1002/anie.201712925

    11. [11]

      Zhu, M. S.; Kim, S. Y.; Mao, L.; Fujitsuka, M.; Zhang, J. Y.; Wang, X. C.; Majima, T. J. Am. Chem. Soc. 2017, 139, 13234. doi: 10.1021/jacs.7b08416  doi: 10.1021/jacs.7b08416

    12. [12]

      Li, Y. X.; Li, H.; Li, Y. F.; Peng, S. Q.; Hu, Y. H. Chem. Eng. J. 2018, 344, 506. doi: 10.1016/j.cej.2018.03.117  doi: 10.1016/j.cej.2018.03.117

    13. [13]

      Ye, P.; Liu, X. L.; Iocozzia, J.; Yuan, Y. P.; Gu, L.; Xu, G. S.; Lin, Z. Q. J. Mater. Chem. A 2017, 5, 8493. doi: 10.1039/C7TA01031A  doi: 10.1039/C7TA01031A

    14. [14]

      She, X. J.; Wu, J. J.; Zhong, J.; Xu, H.; Yang, Y. C.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D. L.; Li, H. M.; Ajayan, P. M. Nano Energy 2016, 27, 138. doi: 10.1016/j.nanoen.2016.06.042  doi: 10.1016/j.nanoen.2016.06.042

    15. [15]

      Cao, S, W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Adv. Mater. 2015, 27, 2150. doi: 10.1002/adma.201500033  doi: 10.1002/adma.201500033

    16. [16]

      Hao, X. Q.; Wang, Y. C.; Zhou, J.; Cui, Z. W.; Wang, Y.; Zou, Z. G. Appl. Catal. B: Environ. 2018, 221, 302. doi: 10.1016/j.apcatb.2017.09.006  doi: 10.1016/j.apcatb.2017.09.006

    17. [17]

      Chen, J.; Shen, S. H.; Guo, P. H.; Wang, M.; Wu, P.; Wang, X. X.; Guo, L. J. Appl. Catal. B: Environ. 2014, 152–153, 335. doi: 10.1016/j.apcatb.2014.01.047  doi: 10.1016/j.apcatb.2014.01.047

    18. [18]

      Feng, C. C.; Wang, Z. H.; Ma, Y.; Zhang, Y. J.; Wang, L.; Bi, Y. P. Appl. Catal. B: Environ. 2017, 205, 19. doi: 10.1016/j.apcatb.2016.12.014  doi: 10.1016/j.apcatb.2016.12.014

    19. [19]

      Chen, J.; Shen, S. H.; Wu, P.; Guo, L. J. Green Chem. 2015, 17, 509. doi: 10.1039/C4GC01683A  doi: 10.1039/C4GC01683A

    20. [20]

      Wang, Q. Z.; Shi, Y. B.; Du, Z. Y.; He, J. J.; Zhong, J. B.; Zhao, L. C.; She, H. D.; Liu, G.; Su, B. T. Eur. J. Inorg. Chem. 2015, 24, 4108. doi: 10.1002/ejic.201500552  doi: 10.1002/ejic.201500552

    21. [21]

      Zhai, C. Y.; Sun, M. J.; Zeng, L. X.; Xue, M. Q.; Pan, J. G.; Du, Y. K.; Zhu, M. S. Appl. Catal. B: Environ. 2019, 243, 283. doi: 10.1016/j.apcatb.2018.10.047  doi: 10.1016/j.apcatb.2018.10.047

    22. [22]

      Yang, H.; Jin, Z. L.; Hu, H. Y.; Bi, Y. P.; Lu, G. X. Appl. Surf. Sci. 2018, 427, 587. doi: 10.1016/j.apsusc.2017.09.021  doi: 10.1016/j.apsusc.2017.09.021

    23. [23]

      Ding, C. M.; Shi, J. Y.; Wang, Z. L.; Li, C. ACS Catal. 2017, 7, 675. doi: 10.1021/acscatal.6b03107  doi: 10.1021/acscatal.6b03107

    24. [24]

      Wang, G. R.; Jin, Z. L. Appl. Surf. Sci. 2019, 467–468, 1239. doi: 10.1016/j.apsusc.2018.10.239  doi: 10.1016/j.apsusc.2018.10.239

    25. [25]

      Wang, H. Y.; Wang, G. R.; Liu, Z. W.; Jin, Z. L. Mol. Catal. 2018, 453, 1. doi: 10.1016/j.mcat.2018.04.028  doi: 10.1016/j.mcat.2018.04.028

    26. [26]

      Chao, Y. G.; Zhou, P.; Li, N.; Lai, J. P.; Yang, Y.; Zhang, Y. L.; Tang, Y. H.; Yang, W. X.; Du, Y. P.; Su, D.; et al. J. Adv. Mater. 2018, 31, 1807226. doi: 10.1002/adma.201807226  doi: 10.1002/adma.201807226

    27. [27]

      Yang, Y.; Kang, Y. K.; Zhao, H. H.; Dai, X. P.; Cui, M. L.; Luan, X. B.; Zhang, X.; Nie, F.; Ren, Z. T.; Song, W. Y. Small 2019, 16, 1905083. doi: 10.1002/smll.201905083  doi: 10.1002/smll.201905083

    28. [28]

      Wang, P. W.; Pu, Z. H.; Li, W. Q.; Zhu, J. W.; Zhang, C. T.; Zhao, Y. F.; Mu, S. C. J. Catal. 2019, 377, 600. doi: 10.1016/j.jcat.2019.08.005  doi: 10.1016/j.jcat.2019.08.005

    29. [29]

      Sun, Y. Q.; Xu, K.; Wei, Z. X.; Li, H. L.; Zhang, T.; Li, X. Y.; Cai, W. P.; Ma, J. M.; Fan, H. J.; Li, Y. Adv. Mater. 2018, 30, 1802121. doi: 10.1002/adma.201802121  doi: 10.1002/adma.201802121

    30. [30]

      Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. Angew. Chem. Int. Edit. 2015, 54, 9351. doi: 10.1002/anie.201503407  doi: 10.1002/anie.201503407

    31. [31]

      Che, Y. P.; Lu, B. X.; Qi, Q.; Chang, H. Q.; Zhai, J.; Wang, K. F.; Liu, Z. Y. Sci. Rep. 2018, 8, 16504. doi: 10.1038/s41598-018-34287-w  doi: 10.1038/s41598-018-34287-w

    32. [32]

      Liu, Y. N.; Shen, C. C.; Jiang, N.; Zhao, Z. W.; Zhou, X.; Zhao, S. J.; Xu, A. W. ACS Catal. 2017, 7, 8228. doi: 10.1021/acscatal.7b03266  doi: 10.1021/acscatal.7b03266

    33. [33]

      Wu, X. H.; Chen, F. Y.; Wang, X. F.; Yu, H. G. Appl. Surf. Sci. 2018, 427, 645. doi: 10.1016/j.apsusc.2017.08.050  doi: 10.1016/j.apsusc.2017.08.050

    34. [34]

      Akple, M. S.; Low, J. X.; Wageh, S.; Ghamdi, A. A. A.; Yu, J. G.; Zhang, J. Appl. Surf. Sci. 2015, 358, 196. doi: 10.1016/j.apsusc.2015.08.250  doi: 10.1016/j.apsusc.2015.08.250

    35. [35]

      Li, Y. B.; Jin, Z. L.; Zhang, L. J.; Fan, K. Chin. J. Catal. 2019, 40, 390. doi: 10.1016/S1872-2067(18)63173-0  doi: 10.1016/S1872-2067(18)63173-0

    36. [36]

      Xu, M.; Han, L.; Dong, S. J. ACS Appl. Mater. Inter. 2013, 5, 12533. doi:10.1021/am4038307  doi: 10.1021/am4038307

    37. [37]

      Meng, J.; Lan, Z. Y.; Chen, T.; Lin, Q. Y.; Liu, H.; Wei, X.; Lu, Y. H.; Li, J. X.; Zhang, Z. J. Phys. Chem. 2018, 122, 24725. doi: 10.1021/acs.jpcc.8b07014  doi: 10.1021/acs.jpcc.8b07014

    38. [38]

      Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H, M. Adv. Mater. 2015, 27, 4572. doi: 10.1002/adma.201501939  doi: 10.1002/adma.201501939

    39. [39]

      Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Nano Res. 2015, 8, 1718. doi: 10.1007/s12274-014-0675-9  doi: 10.1007/s12274-014-0675-9

    40. [40]

      Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Adv. Funct. Mater. 2015, 25, 6885. doi: 10.1002/adfm.201503221  doi: 10.1002/adfm.201503221

    41. [41]

      Zhang, G.G.; Zhang, M. W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Adv. Mater. 2014, 26, 805. doi: 10.1002/adma.201303611  doi: 10.1002/adma.201303611

    42. [42]

      Wang, H. Y.; Jin, Z. L.; Hao, X. Q. Dalton Trans. 2019, 48, 4015. doi: 10.1039/C9DT00586B  doi: 10.1039/C9DT00586B

    43. [43]

      Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Adv. Mater. 2014, 26, 5702. doi: 10.1002/adma.201401692  doi: 10.1002/adma.201401692

    44. [44]

      Li, H. Y.; Gao, D.; Cheng, X. Electrochim. Acta 2014, 138, 232. doi: 10.1016/j.electacta.2014.06.065  doi: 10.1016/j.electacta.2014.06.065

    45. [45]

      Zhang, H. X.; Yang, B.; Wu, X. L.; Li, Z. J.; Lei, L. C.; Zhang, X. W. ACS Appl. Mater. Inter. 2015, 7, 1772. doi: 10.1021/am507373g  doi: 10.1021/am507373g

    46. [46]

      Elbanna, O.; Fujitsuka, M.; Majima, T. ACS Appl. Mater. Inter. 2017, 9, 34844. doi: 10.1021/acsami.7b08548  doi: 10.1021/acsami.7b08548

    47. [47]

      Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Nat. Commun. 2018, 9, 4036. doi: 10.1038/s41467-018-06456-y  doi: 10.1038/s41467-018-06456-y

    48. [48]

      Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Adv. Funct. Mater. 2015, 25, 6885. doi: 10.1002/adfm.201503221  doi: 10.1002/adfm.201503221

    49. [49]

      Tong, Z. W.; Yang, D.; Li, Z.; Nan, Y. H.; Ding, F.; Shen, Y. C.; Jiang, Z. Y. ACS Nano 2017, 11, 1103. doi: 10.1021/acsnano.6b08251  doi: 10.1021/acsnano.6b08251

    50. [50]

      Yan, J. M.; Yi, S. S.; Wulan, B. R.; Li, S. J.; Liu, K. H.; Jiang, Q. Appl. Catal. B: Environ. 2017, 200, 477. doi: 10.1016/j.apcatb.2016.07.046.  doi: 10.1016/j.apcatb.2016.07.046

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    9. [9]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    10. [10]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    11. [11]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    12. [12]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    13. [13]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    14. [14]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(72)
  • Abstract views(836)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return