Citation: Liu Kun, Liu Yao, Zhu Haifeng, Dong Xiaoli, Wang Yonggang, Wang Congxiao, Xia Yongyao. NaTiSi2O6/C Composite as a Novel Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 191203. doi: 10.3866/PKU.WHXB201912030 shu

NaTiSi2O6/C Composite as a Novel Anode Material for Lithium-Ion Batteries

  • Corresponding author: Wang Congxiao, cxwang@fudan.edu.cn Xia Yongyao, yyxia@fudan.edu.cn
  • Received Date: 10 December 2019
    Revised Date: 7 January 2020
    Accepted Date: 7 January 2020
    Available Online: 13 January 2020

    Fund Project: the National Natural Science Foundation of China 21875045The project was supported by the National Natural Science Foundation of China (21875045) and the National Key Research and Development Program of China (2016YFB0901500)the National Key Research and Development Program of China 2016YFB0901500

  • The development of human society and the continuously emerging environmental problems call for cleaner energy resources. Lithium-ion batteries, since their commercialization in the early 1990s, have been an important power source of mobile phones, laptops as well as other portable electronic devices. Their advantages include environment-friendliness, light weight, and no memory effect compared with lead-acid or nickel-cadmium batteries. Electrode materials play an important role in the performance of lithium-ion batteries. The traditional commercial anode material, graphite, has a theoretical specific capacity of 372 mAh·g-1 and working potential close to 0 V (vs Li+/Li), making it prone to the formation of lithium dendrite, which may cause short circuit especially when large current is applied. Another commercial anode material Li4Ti5O12, which also undergoes an intercalation reaction during lithiation process, has a theoretical specific capacity of 175 mAh·g-1 along with three lithium-ion intercalations per formula unit. This is relatively small, and it has a relatively high working potential of 1.55 V (vs Li+/Li), which reduces its output voltage and specific energy when assembled in full battery. To overcome the shortcomings mentioned above, it is essential to search for new anode materials that are low-cost, environment-friendly, and easy to synthesize. Silicate materials have gained widespread attention owing to their low cost and facile synthesis. Herein, we report for the first time a novel titanosilicate, NaTiSi2O6, synthesized by sol-gel and solid sintering. It is isostructural to pyroxene jadeite NaAlSi2O6, belonging to monoclinic crystal system with a space group of C2/c. By in situ pyrolysis and carbonization of glucose, nanosized NaTiSi2O6 mixed with carbon was successfully obtained with a specific surface area of 132 m2·g-1, calculated according to the Brunauer–Emmett–Teller formula. The specific charge/discharge capacity in the first cycle at current density of 0.1 A·g-1 is 266.6 mAh·g-1 and 542.9 mAh·g-1, respectively, with an initial coulombic efficiency of 49.1%. After 100 cycles, it retains a specific charge capacity of 224.1 mAh·g-1, corresponding to a capacity retention rate of 84.1%. The average working potential of NaTiSi2O6 is 1.2–1.3 V (vs Li+/Li), slightly lower than that of Li4Ti5O12. The reaction mechanism while charging and discharging was determined by in situ X-ray diffraction test as well as selected area electron diffraction. The results showed that NaTiSi2O6 undergoes an intercalation reaction during lithiation process, with two lithium-ion intercalations per formula unit. This makes NaTiSi2O6 a new member of the silicate anode material family, and may provide insights into the development of new silicate electrode materials in the future.
  • 加载中
    1. [1]

      Guo, Z.; Zhu, J.; Feng, J.; Du, S. RSC Adv. 2015, 5, 69514. doi: 10.1039/c5ra13289d  doi: 10.1039/c5ra13289d

    2. [2]

      Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Mueller, J. O.; Schloegl, R.; Antonietti, M.; Maier, J. Angew. Chem. Int. Ed. 2008, 47, 1645. doi: 10.1002/anie.200704287  doi: 10.1002/anie.200704287

    3. [3]

      Jia, H.; Gao, P.; Yang, J.; Wang, J.; Nuli, Y.; Yang, Z. Adv. Energy Mater. 2011, 1, 1036. doi: 10.1002/aenm.201100485  doi: 10.1002/aenm.201100485

    4. [4]

      Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Rao, G. V. S.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17, 2792. doi: 10.1002/adfm.200601186  doi: 10.1002/adfm.200601186

    5. [5]

      Zhu, X.; Zhu, Y.; Murali, S.; Stollers, M. D.; Ruoff, R. S. ACS Nano 2011, 5, 3333. doi: 10.1021/nn200493r  doi: 10.1021/nn200493r

    6. [6]

      Lin, Y. M.; Abel, P. R.; Heller, A.; Mullins, C. B. J. Phys. Chem. Lett. 2011, 2, 2885. doi: 10.1021/jz201363j  doi: 10.1021/jz201363j

    7. [7]

      Xu, X.; Cao, R.; Jeong, S.; Cho, J. Nano Lett. 2012, 12, 4988. doi: 10.1021/nl302618s  doi: 10.1021/nl302618s

    8. [8]

      Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J. Adv. Funct. Mater. 2008, 18, 3941. doi: 10.1002/adfm.200801386  doi: 10.1002/adfm.200801386

    9. [9]

      Zhou, G.; Wang, D. W.; Li, F.; Zhang, L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Chem. Mater. 2010, 22, 5306. doi: 10.1021/cm101532x  doi: 10.1021/cm101532x

    10. [10]

      Kang, E.; Jung, Y. S.; Cavanagh, A. S.; Kim, G. H.; George, S. M.; Dillon, A. C.; Kim, J. K.; Lee, J. Adv. Funct. Mater. 2011, 21, 2430. doi: 10.1002/adfm.201002576  doi: 10.1002/adfm.201002576

    11. [11]

      Yu, Y.; Chen, C. H.; Shui, J. L.; Xie, S. Angew. Chem. Int. Ed. 2005, 44, 7085. doi: 10.1002/anie.200501905  doi: 10.1002/anie.200501905

    12. [12]

      Sun, Y.; Hu, X.; Luo, W.; Huang, Y. J. Phys. Chem. C 2012, 116, 20794. doi: 10.1021/jp3070147  doi: 10.1021/jp3070147

    13. [13]

      Sun, Y.; Hu, X.; Luo, W.; Huang, Y. J. Mater. Chem. 2012, 22, 13826. doi: 10.1039/c2jm31159c  doi: 10.1039/c2jm31159c

    14. [14]

      Aravindan, V.; Kumar, P. S.; Sundaramurthy, J.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. J. Power Sources 2013, 227, 284. doi: 10.1016/j.jpowsour.2012.11.050  doi: 10.1016/j.jpowsour.2012.11.050

    15. [15]

      Mai, Y. J.; Shi, S. J.; Zhang, D.; Lu, Y.; Gu, C. D.; Tu, J. P. J. Power Sources 2012, 204, 155. doi: 10.1016/j.jpowsour.2011.12.038  doi: 10.1016/j.jpowsour.2011.12.038

    16. [16]

      Liu, H.; Wang, G.; Liu, J.; Qiao, S.; Ahn, H. J. Mater. Chem. 2011, 21, 3046. doi: 10.1039/c0jm03132a  doi: 10.1039/c0jm03132a

    17. [17]

      Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. doi: 10.1038/35035045  doi: 10.1038/35035045

    18. [18]

      Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 2164. doi: 10.1002/anie.201108300  doi: 10.1002/anie.201108300

    19. [19]

      Cao, F. F.; Wu, X. L.; Xin, S.; Guo, Y. G.; Wan, L. J. J. Phys. Chem. C 2010, 114, 10308. doi: 10.1021/jp103218u  doi: 10.1021/jp103218u

    20. [20]

      Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. Adv. Mater. 2006, 18, 2597. doi: 10.1002/adma.200601232  doi: 10.1002/adma.200601232

    21. [21]

      Li, J. R.; Tang, Z. L.; Zhang, Z. T. Electrochem. Solid-State Lett. 2005, 8, A316. doi: 10.1149/1.1904465  doi: 10.1149/1.1904465

    22. [22]

      van de Krol, R.; Goossens, A.; Meulenkamp, E. A. J. Electrochem. Soc. 1999, 146, 3150. doi: 10.1149/1.1392447  doi: 10.1149/1.1392447

    23. [23]

      Wang, Q. W.; Du, X. F.; Chen, X. Z.; Xu, Y. L. Acta Phys. -Chim. Sin. 2015, 31, 1437.  doi: 10.3866/PKU.WHXB201506162

    24. [24]

      Liu, Y.; Liu, J.; Hou, M.; Fan, L.; Wang, Y.; Xia, Y. J. Mater. Chem. A 2017, 5, 10902. doi: 10.1039/c7ta03173d  doi: 10.1039/c7ta03173d

    25. [25]

      Wang, Y. Q.; Guo, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. J. J. Am. Chem. Soc. 2012, 134, 7874. doi: 10.1021/ja301266w  doi: 10.1021/ja301266w

    26. [26]

      Shen, L.; Zhang, X.; Uchaker, E.; Yuan, C.; Cao, G. Adv. Energy Mater. 2012, 2, 691. doi: 10.1002/aenm.201100720  doi: 10.1002/aenm.201100720

    27. [27]

      Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z.; Chen, L. Adv. Mater. 2011, 23, 1385. doi: 10.1002/adma.201003294  doi: 10.1002/adma.201003294

    28. [28]

      Rahman, M. M.; Wang, J. Z.; Hassan, M. F.; Wexler, D.; Liu, H. K. Adv. Energy Mater. 2011, 1, 212. doi: 10.1002/aenm.201000051  doi: 10.1002/aenm.201000051

    29. [29]

      Colin, J. F.; Godbole, V.; Novak, P. Electrochem. Commun. 2010, 12, 804. doi: 10.1016/j.elecom.2010.03.038  doi: 10.1016/j.elecom.2010.03.038

    30. [30]

      Cheng, L.; Yan, J.; Zhu, G. N.; Luo, J. Y.; Wang, C. X.; Xia, Y. Y. J. Mater. Chem. 2010, 20, 595. doi: 10.1039/b914604k  doi: 10.1039/b914604k

    31. [31]

      Belharouak, I.; Sun, Y. K.; Lu, W.; Amine, K. J. Electrochem. Soc. 2007, 154, A1083. doi: 10.1149/1.2783770  doi: 10.1149/1.2783770

    32. [32]

      Zhu, G. N.; Chen, L.; Wang, Y. G.; Wang, C. X.; Che, R. C.; Xia, Y. Y. Adv. Funct. Mater. 2013, 23, 640. doi: 10.1002/adfm.201201741  doi: 10.1002/adfm.201201741

    33. [33]

      Chiba, K.; Kijima, N.; Takahashi, Y.; Idemoto, Y.; Akimoto, J. Solid State Ionics 2008, 178, 1725. doi: 10.1016/j.ssi.2007.11.004  doi: 10.1016/j.ssi.2007.11.004

    34. [34]

      Perez-Flores, J. C.; Kuhn, A.; Garcia-Alvarado, F. J. Power Sources 2011, 196, 1378. doi: 10.1016/j.jpowsour.2010.08.106  doi: 10.1016/j.jpowsour.2010.08.106

    35. [35]

      Kataoka, K.; Awaka, J.; Kijima, N.; Hayakawa, H.; Ohshima, K. I.; Akimoto, J. Chem. Mater. 2011, 23, 2344. doi: 10.1021/cm103678e  doi: 10.1021/cm103678e

    36. [36]

      Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Energy Environ. Sci. 2012, 5, 6652. doi: 10.1039/c2ee03410g  doi: 10.1039/c2ee03410g

    37. [37]

      Xiao, F. S.; Han, Y.; Yu, Y.; Meng, X. J.; Yang, M.; Wu, S. J. Am. Chem. Soc. 2002, 124, 888. doi: 10.1021/ja0170044  doi: 10.1021/ja0170044

    38. [38]

      Kuznicki, S. M.; Bell, V. A.; Nair, S.; Hillhouse, H. W.; Jacubinas, R. M.; Braunbarth, C. M.; Toby, B. H.; Tsapatsis, M. Nature 2001, 412, 720. doi: 10.1038/35089052  doi: 10.1038/35089052

    39. [39]

      Anderson, M. W.; Terasaki, O.; Ohsuna, T.; Philippou, A.; Mackay, S. P.; Ferreira, A.; Rocha, J.; Lidin, S. Nature 1994, 367, 347. doi: 10.1038/367347a0  doi: 10.1038/367347a0

    40. [40]

      Sinha, A. K.; Seelan, S.; Okumura, M.; Akita, T.; Tsubota, S.; Haruta, M. J. Phys. Chem. B 2005, 109, 3956. doi: 10.1021/jp0465229  doi: 10.1021/jp0465229

    41. [41]

      Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. Angew. Chem. Int. Ed. 2004, 43, 1546. doi: 10.1002/anie.200352900  doi: 10.1002/anie.200352900

    42. [42]

      Anderson, M. W.; Terasaki, O.; Ohsuna, T.; Malley, P. J. O.; Philippou, A.; Mackay, S. P.; Ferreira, A.; Rocha, J.; Lidin, S. Philos. Mag. B 1995, 71, 813. doi: 10.1080/01418639508243589  doi: 10.1080/01418639508243589

    43. [43]

      Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113, 6552. doi: 10.1021/cr3001862  doi: 10.1021/cr3001862

    44. [44]

      Liu, J.; Pang, W. K.; Zhou, T.; Chen, L.; Wang, Y.; Peterson, V. K.; Yang, Z.; Guo, Z.; Xia, Y. Energy Environ. Sci. 2017, 10, 1456. doi: 10.1039/c7ee00763a  doi: 10.1039/c7ee00763a

    45. [45]

      Milne, N. A.; Griffith, C. S.; Hanna, J. V.; Skyllas-Kazacos, M.; Luca, V. Chem. Mater. 2006, 18, 3192. doi: 10.1021/cm0523337  doi: 10.1021/cm0523337

    46. [46]

      Liu, M. P.; Hu, Y. X.; Du, H. B. Chin. J. Inorg. Chem. 2015, 31, 2425.  doi: 10.11862/cjic.2015.315

    47. [47]

      Chaupatnaik, A.; Srinivasan, M.; Barpanda, P. ACS Appl. Energy Mater. 2019, 2, 2350. doi: 10.1021/acsaem.8b01906  doi: 10.1021/acsaem.8b01906

    48. [48]

      He, D.; Wu, T.; Wang, B.; Yang, Y.; Zhao, S.; Wang, J.; Yu, H. Chem. Commun. 2019, 55, 2234. doi: 10.1039/c9cc00043g  doi: 10.1039/c9cc00043g

    49. [49]

      Isobe, M.; Ninomiya, E.; Vasil'ev, A. N.; Ueda, Y. J. Phys. Soc. Jpn. 2002, 71, 1423. doi: 10.1143/jpsj.71.1423  doi: 10.1143/jpsj.71.1423

    50. [50]

      Larson, A. C.; Von Dreele, R. B. GSAS; Los Alamos National Laboratory Report LAUR: Los Alamos, NM, USA, 1994; pp. 86–748.

    51. [51]

      Toby, B. H. J. Appl. Crystallogr. 2001, 34, 210. doi: 10.1107/s0021889801002242  doi: 10.1107/s0021889801002242

    52. [52]

      Weppner, W.; Huggins, R. A. J. Electrochem. Soc. 1977, 124, 1569. doi: 10.1149/1.2133112  doi: 10.1149/1.2133112

    53. [53]

      Yu, P.; Popov, B. N.; Ritter, J. A.; White, R. E. J. Electrochem. Soc. 1999, 146, 8. doi: 10.1149/1.1391556  doi: 10.1149/1.1391556

    54. [54]

      Ding, N.; Xu, J.; Yao, Y. X.; Wegner, G.; Fang, X.; Chen, C. H.; Lieberwirth, I. Solid State Ionics 2009, 180, 222. doi: 10.1016/j.ssi.2008.12.015  doi: 10.1016/j.ssi.2008.12.015

    55. [55]

      Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H. Electrochim. Acta 2010, 55, 2384. doi: 10.1016/j.electacta.2009.11.096  doi: 10.1016/j.electacta.2009.11.096

    56. [56]

      Wang, J.; Zhang, G.; Liu, Z.; Li, H.; Liu, Y.; Wang, Z.; Li, X.; Shih, K.; Mai, L. Nano Energy 2018, 44, 272. doi: 10.1016/j.nanoen.2017.11.079  doi: 10.1016/j.nanoen.2017.11.079

    57. [57]

      Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ionics 2002, 148, 45. doi: 10.1016/S0167-2738(02)00134-0  doi: 10.1016/S0167-2738(02)00134-0

    58. [58]

      Song, H. J.; Kim, J. C.; Lee, C. W.; Park, S.; Dar, M. A.; Hong, S. H.; Kim, D. W. Electrochim. Acta 2015, 170, 25. doi: 10.1016/j.electacta.2015.04.113  doi: 10.1016/j.electacta.2015.04.113

  • 加载中
    1. [1]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    2. [2]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    3. [3]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    4. [4]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    5. [5]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    6. [6]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    10. [10]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    11. [11]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    12. [12]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    13. [13]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    16. [16]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    17. [17]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    18. [18]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    19. [19]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    20. [20]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

Metrics
  • PDF Downloads(20)
  • Abstract views(670)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return