Citation: Ling Yunyun, Xia Yunsheng. Gold Based Nanocomposites: Fabrication Strategies, Properties, and Tumor Theranostic Applications[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191200. doi: 10.3866/PKU.WHXB201912006 shu

Gold Based Nanocomposites: Fabrication Strategies, Properties, and Tumor Theranostic Applications

  • Corresponding author: Xia Yunsheng, xiayuns@mail.ahnu.edu.cn
  • Received Date: 2 December 2019
    Revised Date: 27 December 2019
    Accepted Date: 6 January 2020
    Available Online: 14 February 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21775004) and the Young Program of Wannan Medical College, China (WK201512)The project was supported by the National Natural Science Foundation of China 21775004the Young Program of Wannan Medical College, China WK201512

  • Gold nanoparticles (AuNPs) have been widely applied in the biomedical field due to their tunable localized surface plasmon resonance (LSPR) properties, versatile surface modifiability, and favorable biocompatibility. With the in-depth study, individual AuNPs cannot meet the requirements for multifunctional biological applications. By combining AuNPs with other inorganic materials, material scientists and chemists have successfully prepared various gold-based nanocomposites (AuNCs), such as Au-metals, Au-semiconductors, Au-magnetic nanocomposites, etc. Furthermore, despite their compositions being the same, products with different topological morphologies (i.e. core@shell, yolk@shell, core-satellite, and Janus) can be fabricated by sophisticated chemistry. Based on their special collective properties and synergetic effects, multifunctional AuNCs have been proposed for tumor theranostic applications; their parts exhibit impressive imaging/therapeutic performances and present tremendous application perspectives for basic research and at a pre-clinical stage. For example, when Au is combined with porous drug carriers, its photothermal properties can promote drug release, which can be useful for developing intelligent drug delivery platforms. In addition, Au and magnetic material hybrids can be used in multimodal imaging and combination therapy, depending on the integration of its optical and magnetic properties. Moreover, when Au is combined with semiconductor material, either LSPR coupling effects or nonradiative energy transfer occurs between them, causing enhanced photothermal or photodynamic therapy. Therefore, in this review, we have highlighted the fabrication approaches of AuNCs including the one-step method, seed-mediated growth method, ex situ assembly method, etc. For the one-step method, we emphasize that Au and other components nucleate and grow concurrently, which is frequently employed for the preparation of Au based alloys. The key to synthesizing AuNCs by seed-mediated growth method is the degree of lattice matching between the different components and the interactions of their heterogeneous interfaces; if the crystal lattices are well-matched, AuNCs can be obtained by direct epitaxial growth. Furthermore, approaches including the introduction of a ligand/surfactant, intermediate layer, and molecular weak interactions into the heterogeneous interfaces can regulate the two components' interaction and fabricate various AuNCs. For the ex situ assembly method, prefabricated AuNPs and other nanoparticles can be assembled into AuCNs by electrostatic attraction, host-guest reaction, bio-recognition, covalent binding, etc. We also summarize the recent achievements of typical AuNCs (i.e. Au-MOF, Au-Fe3O4, and Au-Cu2xS) in tumor theranostic applications based on their collective properties and/or synergetic effects, respectively. Finally, the main problems and the future developments of this research field are also discussed.
  • 加载中
    1. [1]

      Shen, H. Y.; Cheng, L.; Li, L. L.; Liu, H. Y. Gold Nanoparticles and Their Bioapplications. In Nanobiomaterials: Classification, Fabrication and Biomedical Applications; Wang, X. M.; Ramalingam, M.; Kong, X. D.; Zhao; L. Y. Eds.; Wiley: San Francisco, 2017; pp. 359–377.

    2. [2]

      Xia, Y. S. Anal Bioanal Chem 2016, 408, 2813. doi: 10.1007/s00216-015-9203-3  doi: 10.1007/s00216-015-9203-3

    3. [3]

      Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Chem. Rev. 2016, 116, 10414. doi: 10.1021/acs.chemrev.6b00211  doi: 10.1021/acs.chemrev.6b00211

    4. [4]

      Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Adv. Mater. 2014, 26, 5274. doi: 10.1002/adma.201400203  doi: 10.1002/adma.201400203

    5. [5]

      Huang, L.; Ao, L. J.; Hu, D. H.; Wang, W.; Sheng, Z. H.; Su, W. Chem. Mater. 2016, 28 (16), 5896. doi: 10.1021/acs.chemmater.6b02413  doi: 10.1021/acs.chemmater.6b02413

    6. [6]

      Nguyen, T. T.; Mammeri, F.; Ammar, S. Nanomaterials 2018, 8, 149. doi: 10.3390/nano8030149  doi: 10.3390/nano8030149

    7. [7]

      Bertorelle, F.; Pinto, M.; Zappon, R.; Pilot, R.; Litti, L.; Fiameni, S.; Conti, G.; Gobbo, M.; Toffoli, G.; Colombatti, M.; et al. Nanoscale 2018, 10, 976. doi: 10.1039/C7NR07844G  doi: 10.1039/C7NR07844G

    8. [8]

      Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Nano Lett. 2005, 5 (4), 709. doi: 10.1021/nl050127s  doi: 10.1021/nl050127s

    9. [9]

      Calavia, P. G.; Bruce, G.; Pérez-García, L.; Russell, D. A. Photochem. Photobiol. Sci. 2018, 17, 1534. doi: 10.1039/C8PP00271A  doi: 10.1039/C8PP00271A

    10. [10]

      Kumar, S.; Diwan, A.; Singh, P.; Gulati, S.; Choudhary, D.; Mongia, A.; Shuklaa, S.; Gupta, A. RSC Adv. 2019, 9, 23894. doi: 10.1039/C9RA03608C  doi: 10.1039/C9RA03608C

    11. [11]

      Jeong, H. H.; Choi, E.; Ellis, E.; Lee, T. C. J. Mater. Chem. B 2019, 7, 3480. doi: 10.1039/C9TB00557A  doi: 10.1039/C9TB00557A

    12. [12]

      Yang, Y. J.; Zhong, S. A.; Wang, K. M.; Huang, J. Analyst 2019, 144, 1052. doi: 10.1039/C8AN02070A  doi: 10.1039/C8AN02070A

    13. [13]

      Sabale, S.; Kandesar, P.; Jadhav, V.; Komorek, R.; Motkuri, R. K.; Yu, X. Y. Biomater. Sci. 2017, 5, 2212. doi: 10.1039/C7BM00723J  doi: 10.1039/C7BM00723J

    14. [14]

      Goswami, N.; Luo, Z. T.; Yuan, X.; Leong, D. T.; Xie, J. P. Mater. Horiz. 2017, 4, 817. doi: 10.1039/C7MH00451F  doi: 10.1039/C7MH00451F

    15. [15]

      Zong, J. Y.; Cobb, S. L.; Cameron, N. R. Biomater. Sci. 2017, 5, 872. doi: 10.1039/C7BM00006E  doi: 10.1039/C7BM00006E

    16. [16]

      Ali, M. R. K.; Wu, Y.; El-Sayed, M. A.; J. Phys. Chem. C 2019, 123 (25), 15375. doi: 10.1021/acs.jpcc.9b01961  doi: 10.1021/acs.jpcc.9b01961

    17. [17]

      Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Mol. Pharmaceutics 2019, 16 (1), 1. doi: 10.1021/acs.molpharmaceut.8b00810  doi: 10.1021/acs.molpharmaceut.8b00810

    18. [18]

      Amendoeira, A.; García, L. R.; Fernandes, A. R.; Baptista, P. V. Adv. Therap. 2019, 1900153. doi: 10.1002/adtp.201900153  doi: 10.1002/adtp.201900153

    19. [19]

      Riley, R. S.; Day, E. S. WIREs Nanomed Nanobiotechnol. 2017, 9, e1449. doi: 10.1002/wnan.1449  doi: 10.1002/wnan.1449

    20. [20]

      Jin, N.; Zhang, Q.; Yang, M. Y.; Yang, M. Y. Microsc. Res. Tech. 2019, 82, 670. doi: 10.1002/jemt.23213  doi: 10.1002/jemt.23213

    21. [21]

      Huang, Y.; Huang, P.; Lin, J. Small Methods 2019, 3 (3), 1800394. doi: 10.1002/smtd.201800394  doi: 10.1002/smtd.201800394

    22. [22]

      Li, X. J.; Kono, K. J. Polym. Int. 2018, 67 (7), 840. doi: 10.1002/pi.5583  doi: 10.1002/pi.5583

    23. [23]

      Luo, Z.; Xu, Y.; Ye, E. Y.; Li, Z. B.; Wu, Y. L. Macromol. Rapid Commun. 2019, 40 (5), 1800029. doi: 10.1002/marc.201800029  doi: 10.1002/marc.201800029

    24. [24]

      Laprise-Pelletier, M.; Simão, T.; Fortin, M. A. Adv. Healthcare Mater. 2018, 7 (16), 1701460. doi: 10.1002/adhm.201701460  doi: 10.1002/adhm.201701460

    25. [25]

      Lopes, T. S.; Alves, G. G.; Pereira, M. R.; Granjeiro, J. M.; Leite, P. E. C. J. Cell Biochem. 2019, 120, 16370. doi: 10.1002/jcb.29044  doi: 10.1002/jcb.29044

    26. [26]

      Luo, C. H.; Yeh, C. S. J. Chin. Chem. Soc. 2017, 64 (11), 1250. doi: 10.1002/jccs.201700255  doi: 10.1002/jccs.201700255

    27. [27]

      Li, B.; Lane, L. A. WIREs Nanomed Nanobiotechnol. 2019, 11, e1542. doi: 10.1002/wnan.1542  doi: 10.1002/wnan.1542

    28. [28]

      Park, J. E.; Kim, M.; Hwang, J. H.; Nam, J. M. Small Methods 2017, 1, 1600032. doi: 10.1002/smtd.201600032  doi: 10.1002/smtd.201600032

    29. [29]

      Bouché, M.; Hsu, J. C.; Dong, Y. X.; C. Kim, J.; Taing, K.; Cormode, D. P. Bioconjugate Chem. 2020, In press. doi: 10.1021/acs.bioconjchem.9b00669

    30. [30]

      Nguyen-Tri, P.; Ouellet-Plamondon, C.; Rtimi, S.; Assadi, A. A.; Nguyen, T. A. Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications; Mohapatra, S.; Nguyen, T. A.; Nguyen-Tri, P. Eds.; Elsevier: Amsterdam, 2019; pp. 51–63.

    31. [31]

      Li, X. H.; Zhu, J. M.; Wei, B. Q. Chem. Soc. Rev. 2016, 45, 3145. doi: 10.1039/c6cs00195e  doi: 10.1039/c6cs00195e

    32. [32]

      He, W. W.; Han, X. N.; Jia, H. M.; Cai, J. H.; Zhou, Y. L.; Zheng, Z. Sci. Rep. 2017, 7, 40103. doi: 10.1038/srep40103  doi: 10.1038/srep40103

    33. [33]

      Wang, C.; Yin, H. F.; Chan, R.; Peng, S.; Dai, S.; Sun, S. H. Chem. Mater. 2009, 21 (3), 433. doi: 10.1021/cm802753j  doi: 10.1021/cm802753j

    34. [34]

      Wei, J. J.; Guo, Y. J.; Li, J. Z.; Yuan, M. K.; Long, T. F.; Liu, Z. D. Anal. Chem. 2017, 89, 9781. doi: 10.1021/acs.analchem.7b01723  doi: 10.1021/acs.analchem.7b01723

    35. [35]

      Shevchenko, G. P.; Zhuravkov, V. A.; Shishko, G. V. SN Appl. Sci. 2019, 1, 1192. doi: 10.1007/s42452-019-1143-7  doi: 10.1007/s42452-019-1143-7

    36. [36]

      Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Nat. Commun. 2014, 5, 4948. doi: 10.1038/ncomms5948  doi: 10.1038/ncomms5948

    37. [37]

      Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. J. Am. Chem. Soc. 2015, 137, 13452. doi: 10.1021/jacs.5b07521  doi: 10.1021/jacs.5b07521

    38. [38]

      Yin, Z.; Wang, Y.; Song, C. Q.; Zheng, L.H.; Ma, N.; Liu, X.; Li, S. W.; Lin, L. L.; Li, M. Z.; Xu, Y.; et al. J. Am. Chem. Soc. 2018, 140, 864. doi: 10.1021/jacs.7b11293  doi: 10.1021/jacs.7b11293

    39. [39]

      Hutzler, A.; Schmutzler, T.; Jank, M. P. M.; Branscheid, R.; Spiecker, T. U. E.; Frey, L. Nano Lett. 2018, 18, 7222. doi: 10.1021/acs.nanolett.8b03388  doi: 10.1021/acs.nanolett.8b03388

    40. [40]

      Kumar, D.; Lee, S. B.; Park, C. H.; Kim, C. S. ACS Appl. Mater. Interfaces 2018, 10, 389. doi: 10.1021/acsami.7b12119  doi: 10.1021/acsami.7b12119

    41. [41]

      Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. Adv. Mater. 2017, 29, 1701331. doi: 10.1002/adma.201701331  doi: 10.1002/adma.201701331

    42. [42]

      Lu, Q.; Wang, A.; Gong, Y.; Hao, W.; Cheng, H.; Chen, J.; Li, B.; Yang, N.; Niu, W.; Wang, J.; et al. Nat. Chem. 2018, 10, 456. doi: 10.1038/s41557-018-0012-0  doi: 10.1038/s41557-018-0012-0

    43. [43]

      Liu, F.; Goyal, S.; Forrester, M.; Ma, T.; Miller, K.; Mansoorieh, Y.; Henjum, J.; Zhou, L.; Cochran, E.; Jiang, S. Nano Lett. 2019, 19, 1587. doi: 10.1021/acs.nanolett.8b04464  doi: 10.1021/acs.nanolett.8b04464

    44. [44]

      Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Science 2010, 327, 1634. doi: 10.1126/science.1184769  doi: 10.1126/science.1184769

    45. [45]

      Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Adv. Mater. 2014, 26, 1387. doi: 10.1002/adma.201304652  doi: 10.1002/adma.201304652

    46. [46]

      Gui, J.; Ji, M.; Liu, J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Angew. Chem. Int. Ed. 2015, 54, 3683. doi: 10.1002/anie.201410053  doi: 10.1002/anie.201410053

    47. [47]

      Liu, J.; Feng, J. W.; Gui, J.; Chen, T.; Xu, M.; Wang, H. Z.; Dong, H. F.; Chen, H. L.; Li, X. W.; Wang, L.; et al. Nano Energy 2018, 48, 44. doi: 10.1016/j.nanoen.2018.02.040  doi: 10.1016/j.nanoen.2018.02.040

    48. [48]

      Ji, M.; Xu, M.; Zhang, W.; Yang, Z.; Huang, L.; Liu, J.; Zhang, Y.; Gu, L.; Yu, Y.; Hao, W.; et al. Adv. Mater. 2016, 28, 3094. doi: 10.1002/adma.201503201  doi: 10.1002/adma.201503201

    49. [49]

      Huang, L.; Zheng, J. J.; Huang, L. L.; Liu, J.; Ji, M. W.; Yao, Y.; Xu, M.; Liu, J. J.; Zhang, J. T.; Li, Y. D. Chem. Mater. 2017, 29, 2355. doi: 10.1021/acs.chemmater.7b00046  doi: 10.1021/acs.chemmater.7b00046

    50. [50]

      Ji, M. W.; Li, X. Y.; Wang, H. Z.; Huang, L.; Xu, M.; Liu, J.; Liu, J. J.; Wang, J.; Zhang, J. T. Nano Res. 2017, 10 (9), 2977. doi: 10.1007/s12274-017-1508-4  doi: 10.1007/s12274-017-1508-4

    51. [51]

      Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Nano Res. 2018, 11 (6), 3294. doi: 10.1007/s12274-017-1874-y  doi: 10.1007/s12274-017-1874-y

    52. [52]

      Cai, W.; Wang, J. Q.; Liu, H.; Chen, W.; Wang, J.; Du, L. P.; Hu, J.; Wu, C. S. J. Alloys Compd. 2018, 748, 193. doi: 10.1016/j.jallcom.2018.03.133  doi: 10.1016/j.jallcom.2018.03.133

    53. [53]

      Deng, X. R.; Liang, S.; Cai, X. C.; Huang, S. S.; Cheng, Z. Y.; Shi, Y. S.; Pang, M. L.; Ma, P. A.; Lin, J. Nano Lett. 2019, 19 (10), 6772. doi: 10.1021/acs.nanolett.9b01716  doi: 10.1021/acs.nanolett.9b01716

    54. [54]

      Deng, X. R.; Li, K.; Cai, X. C.; Liu, B.; Wei, Y.; Deng, K. R.; Xie, Z. X.; Wu, Z. J.; Ma, P. A.; Hou, Z. Y.; et al. Adv. Mater. 2017, 29, 1701266. doi: 10.1002/adma.201701266  doi: 10.1002/adma.201701266

    55. [55]

      Osterrieth, J. W. M.; Wright, D.; Noh, H.; Kung, C. W.; Vulpe, D.; Li, A.; Park, J. E.; Duyne, R. P. V.; Moghadam, P. Z.; Baumberg, J. J.; et al. J. Am. Chem. Soc. 2019, 141, 3893. doi: 10.1021/jacs.8b11300  doi: 10.1021/jacs.8b11300

    56. [56]

      Liu, B.; Mosa, I. M.; Song, W.; Zheng, H.; Kuo, C.; Rusling, J. F.; Suib, S. L.; He, J. J. Mater. Chem. A 2016, 4, 6447. doi: 10.1039/c6ta02017h  doi: 10.1039/c6ta02017h

    57. [57]

      Wei, L.; Li, C. Q.; Chu, H. B.; Li, Y. Dalton Trans. 2011, 40, 2332. doi: 10.1039/C0DT01073A  doi: 10.1039/C0DT01073A

    58. [58]

      Lin, X. D.; Uzayisenga, V.; Li, J. F.; Fang, P. P.; Wu, D. Y.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2012, 43, 40. doi: 10.1002/jrs.3007  doi: 10.1002/jrs.3007

    59. [59]

      Yi, X.; Chen, L.; Zhong, X. Y.; Gao, R. L.; Qian, Y. T.; Wu, F.; Song, G. S.; Chai, Z. F.; Liu, Z.; Yang, K. Nano Res. 2016, 9, 3267. doi: 10.1007/s12274-016-1205-8  doi: 10.1007/s12274-016-1205-8

    60. [60]

      Zhou, X.; Zhao, G. F.; Chen, M. H.; Gao, W.; Zhou, X. J.; Xie, X. G.; Yang, L.; Du, G. B. ACS Sustainable Chem. Eng. 2018, 6, 3948. doi: 10.1021/acssuschemeng.7b04313  doi: 10.1021/acssuschemeng.7b04313

    61. [61]

      Liang, R. J.; Liu, L. L.; He, H. M.; Chen, Z. K.; Han, Z. Q.; Luo, Z. Y.; Wu, Z. H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. Biomaterials 2018, 177, 149. doi: 10.1016/j.biomaterials.2018.05.051  doi: 10.1016/j.biomaterials.2018.05.051

    62. [62]

      Wang, F. Y.; Li, Y. L.; Han, Y. M.; Ye, Z. J.; Wei, L.; Luo, H. B.; Xiao, L. H. Anal. Chem. 2019, 91, 6329. doi: 10.1021/acs.analchem.9b01300  doi: 10.1021/acs.analchem.9b01300

    63. [63]

      Ling, Y. Y.; Zhang, D.; Cui, X. M.; Wei, M. M.; Zhang, T.; Wang, J. F.; Xiao, L. H.; Xia, Y. S. Angew. Chem. Int. Ed. 2019, 58, 10542. doi: 10.1002/anie.201902987  doi: 10.1002/anie.201902987

    64. [64]

      Hu, S. H.; Liu, X. Y.; Wang, C. R.; Camargo, P. H. C.; Wang, J. L. ACS Appl. Mater. Interfaces 2019, 11, 17444. doi: 10.1021/acsami.9b03879  doi: 10.1021/acsami.9b03879

    65. [65]

      Zhu, K.; Wang, C. R.; Camargo, P. H. C.; Wang, J. L. J. Mater. Chem. A 2019, 7, 925. doi: 10.1039/c8ta09785b  doi: 10.1039/c8ta09785b

    66. [66]

      Wu, R.; Min, Q. H.; Guo, J. J.; Zheng, T. T.; Jiang, L. P.; Zhu, J. J. Anal. Chem. 2019, 91, 4608. doi: 10.1021/acs.analchem.8b05877  doi: 10.1021/acs.analchem.8b05877

    67. [67]

      Zeng, J. B.; Gong, M. F.; Wang, D. W.; Li, M. M.; Xu, W. J.; Li, Z. W.; Li, S. C.; Zhang, D.; Yan, Z. F.; Yin, Y. D. Nano Lett. 2019, 19, 3011. doi: 10.1021/acs.nanolett.9b00171  doi: 10.1021/acs.nanolett.9b00171

    68. [68]

      Li, M. J.; Zheng, Y. N.; Liang, W. B.; Yuan, R.; Chai, Y. Q. ACS Appl. Mater. Interfaces 2017, 9, 42111. doi: 10.1021/acsami.7b13894  doi: 10.1021/acsami.7b13894

    69. [69]

      Zeng, L. P.; Li, K. Z.; Wang, H.; Yu, H.; Zhu, X.; Wei, Y. G.; Ning, P. H.; Shi, C. Z.; Luo, Y. M. J. Phys. Chem. C 2017, 121, 12696. doi: 10.1021/acs.jpcc.7b01363  doi: 10.1021/acs.jpcc.7b01363

    70. [70]

      Li, D.; Jiang, L. M.; Piper, J. A.; Maksymov, I. S.; Greentree, A. D.; Wang, E. K.; Wang, Y. L. ACS Sens. 2019, 4, 2507. doi: 10.1021/acssensors.9b01211  doi: 10.1021/acssensors.9b01211

    71. [71]

      Ortiz, N.; Hong, S. J.; Fonseca, F.; Liu, Y.; Wang, G. F. J. Phys. Chem. C 2017, 121, 1876. doi: 10.1021/acs.jpcc.6b12024  doi: 10.1021/acs.jpcc.6b12024

    72. [72]

      Hinman, J. G.; Turner, J. G.; Hofmann, D. M.; Murphy, C. J. Chem. Mater. 2018, 30 (20), 7255. doi: 10.1021/acs.chemmater.8b03341  doi: 10.1021/acs.chemmater.8b03341

    73. [73]

      Zeng, J. Y.; Wang, X. S.; Zhang, M. K.; Li, Z. H.; Gong, D.; Pan, P.; Huang, L.; Cheng, S. X.; Cheng, H.; Zhang, X. Z. ACS Appl. Mater. Interfaces 2017, 9, 43143. doi: 10.1021/acsami.7b14881  doi: 10.1021/acsami.7b14881

    74. [74]

      Bao, H. M.; Zhang, H. W.; Zhou, L.; Fu, H.; Liu, G. Q.; Li, Y.; Cai, W. P. ACS Appl. Mater. Interfaces 2019, 11, 28145. doi: 10.1021/acsami.9b05878  doi: 10.1021/acsami.9b05878

    75. [75]

      Parandhaman, T.; Pentela, N.; Ramalingam, B.; Samanta, D.; Das, S. K. ACS Sustainable Chem. Eng. 2017, 5, 489. doi: 10.1021/acssuschemeng.6b01862  doi: 10.1021/acssuschemeng.6b01862

    76. [76]

      Sun, H.; He, J. T.; Wang, J. Y.; Zhang, S. Y.; Liu, C. C.; Sritharan, T.; Mhaisalkar, S.; Han, M. Y.; Wang, D.; Chen, H. Y. J. Am. Chem. Soc. 2013, 135, 9099. doi: 10.1021/ja4035335  doi: 10.1021/ja4035335

    77. [77]

      Huang, L. Ao, L. J.; Hu, D. H.; Wang, W.; Sheng, Z. H.; Su, W. Chem. Mater. 2016, 28 (16), 5896. doi: 10.1021/acs.chemmater.6b02413  doi: 10.1021/acs.chemmater.6b02413

    78. [78]

      Yang, Z. Z.; Ding, X. G.; Jiang, J. Nano Res. 2016, 9 (3), 787. doi: 10.1007/s12274-015-0958-9  doi: 10.1007/s12274-015-0958-9

    79. [79]

      Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. ACS Nano 2015, 9 (7), 6951. doi: 10.1021/acsnano.5b01138  doi: 10.1021/acsnano.5b01138

    80. [80]

      Xia, Y. S; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z. Y; Glotzer, S. C.; Kotov, N. A. Nat. Nanotechnol. 2011, 6, 580. doi: 10.1038/NNANO.2011.121  doi: 10.1038/NNANO.2011.121

    81. [81]

      Zhu, H.; Wang, Y.; Chen, C.; Ma, M. R; Zeng, J. F.; Li, S. Z.; Xia, Y. S.; Gao, M. Y. ACS Nano 2017, 11, 8273. doi: 10.1021/acsnano.7b03369  doi: 10.1021/acsnano.7b03369

    82. [82]

      Xia, Y. S.; Song, L.; Zhu, C. Q. Anal. Chem. 2011, 83, 1401. doi: 10.1021/ac1028825  doi: 10.1021/ac1028825

    83. [83]

      Chen, H. D.; Xia, Y. S. Anal. Chem. 2014, 86, 11062. doi: 10.1021/ac5031804  doi: 10.1021/ac5031804

    84. [84]

      Xu, J.; Yang, W. M.; Huang, S. J.; Yin, H.; Zhang, H.; Radjenovic, P.; Yang, Z. L.; Tian, Z. Q.; Li, J. F. Nano Energy 2018, 49, 363. doi: 10.1016/j.nanoen.2018.04.048  doi: 10.1016/j.nanoen.2018.04.048

    85. [85]

      Maji, S. K.; Yu, S. B.; Chung, K.; Ramasamy, M. S.; Lim, J. W.; Wang, J. F.; Lee, H.; Kim, D. H. ACS Appl. Mater. Interfaces 2018, 10, 42068. doi: 10.1021/acsami.8b15443  doi: 10.1021/acsami.8b15443

    86. [86]

      Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Nano Res. 2012, 5, 272. doi: 10.1007/s12274-012-0207-4  doi: 10.1007/s12274-012-0207-4

    87. [87]

      Qu, H. N.; Yang, L. R.; Yu, J. M.; Wang, L.; Liu, H. Z. Ind. Eng. Chem. Res. 2018, 57, 9448. doi: 10.1021/acs.iecr.8b00894  doi: 10.1021/acs.iecr.8b00894

    88. [88]

      Zhao, Y.; Huang, Y. C.; Zhu, H.; Zhu, Q. Q.; Xia, Y. S. J. Am. Chem. Soc. 2016, 138, 16645. doi: 10.1021/jacs.6b07590  doi: 10.1021/jacs.6b07590

    89. [89]

      Zhang, L. B.; Jean, S. R.; Li, X. Y.; Sack, T. J.; Wang, Z. J.; Ahmed, S.; Chan, G.; Das, J.; Zaragoza, A.; Sargent, E. H.; Kelley, S. O. Nano Lett. 2018, 18, 6222. doi: 10.1021/acs.nanolett.8b02263  doi: 10.1021/acs.nanolett.8b02263

    90. [90]

      Sun, J. F.; Zhang, X. Y.; Li, T.; Xie, J. J.; Shao, B.; Xue, D. S.; Tang, X.; Li, H.; Liu, Y. H. Anal. Chem. 2019, 91, 6454. doi: 10.1021/acs.analchem.8b04458  doi: 10.1021/acs.analchem.8b04458

    91. [91]

      Sun, M. Z.; Hao, T. T.; Li, X. Y.; Qu, A. H.; Xu, L. G.; Hao, C. L.; Xu, C. L.; Kuang, H. Nat. Commun. 2018, 9, 4494. doi: 10.1038/s41467-018-06946-z  doi: 10.1038/s41467-018-06946-z

    92. [92]

      Liu, T. J.; Besteiro, L. V.; Liedl, T.; Correa-Duarte, M. A.; Wang, Z. M.; Govorov, A. O. Nano Lett. 2019, 19, 1395. doi: 10.1021/acs.nanolett.8b05179  doi: 10.1021/acs.nanolett.8b05179

    93. [93]

      Hu, L.; Liedl, T.; Martens, K.; Wang, Z. M.; Govorov, A. O. ACS Photonics 2019, 6, 749. doi: 10.1021/acsphotonics.8b01676  doi: 10.1021/acsphotonics.8b01676

    94. [94]

      Jiang Q.; Liu Q.; Shi Y. F.; Wang, Z. G.; Zhan, P. F.; Liu, J. B.; Liu, C.; Wang, H.; Shi, X. H; Zhang, L.; et al. Nano Lett. 2017, 17, 7125. doi: 10.1021/acs.nanolett.7b03946  doi: 10.1021/acs.nanolett.7b03946

    95. [95]

      Sun, M. Z.; Qu, A. H.; Hao, C. L.; Wu, X. L.; Xu, L. G.; Xu, C. L.; Kuang, H. Adv. Mater. 2018, 30, 1804241. doi: 10.1002/adma.201804241  doi: 10.1002/adma.201804241

    96. [96]

      Kim, Y. K.; Bang, Y. B.; Lee, A. H.; Song, Y. K. ACS Nano 2019, 13, 1183. doi: 10.1021/acsnano.8b06170  doi: 10.1021/acsnano.8b06170

    97. [97]

      Ismaili, H.; Lagugne-Labarthet, F.; Workentin, M. S. Chem. Mater. 2011, 23, 1519. doi: 10.1021/cm103284g  doi: 10.1021/cm103284g

    98. [98]

      Cheng, X.; Sun, R.; Yin, L.; Chai, Z.; Shi, H.; Gao, M. Adv. Mater. 2017, 29, 1604894. doi: 10.1002/adma.201604894  doi: 10.1002/adma.201604894

    99. [99]

      Liu, Y.; Kou, Q.; Wang, D.; Chen, L.; Sun, Y.; Lu, Z.; Zhang, Y.; Wang, Y.; Yang, J.; Xing, S. G. J. Mater. Sci. 2017, 52, 10163. doi: 10.1007/s10853-017-1200-9  doi: 10.1007/s10853-017-1200-9

    100. [100]

      Chen, Y.; Wu, T.; Xing, G.; Kou, Y.; Li, B.; Wang, X.; Gao, M.; Chen, L.; Wang, Y.; Yang, J.; et al. Ind. Eng. Chem. Res. 2019, 58 (33), 15151. doi: 10.1021/acs.iecr.9b02777  doi: 10.1021/acs.iecr.9b02777

    101. [101]

      Song, J. B.; Wu, B. H.; Zhou, Z. J.; Zhu, G. Z.; Liu, Y. J.; Yang, Z.; Lin, L.; Yu, G. C.; Zhang, F. W.; Zhang, G. F.; et al. Angew. Chem. Int. Ed. 2017, 56, 8110. doi: 10.1002/anie.201702572  doi: 10.1002/anie.201702572

    102. [102]

      Song, J. B.; Lin, L.; Yang, Z.; Zhu, R.; Zhou, Z. J.; Li, Z. W.; Wang, F.; Chen, J. Y.; Yang, H. H.; Chen, X. Y. J. Am. Chem. Soc. 2019, 141, 8158. doi: 10.1021/jacs.8b13902  doi: 10.1021/jacs.8b13902

    103. [103]

      Klein, S.; Stiegler, L. M. S.; Harreiss, C.; Distel, L. V. R.; Neuhuber, W.; Spiecker, E.; Hirsch, A.; Kryschi, C. ACS Appl. Bio. Mater. 2018, 1, 2002. doi: 10.1021/acsabm.8b00511  doi: 10.1021/acsabm.8b00511

    104. [104]

      Klein, S.; Harreiß, C.; Menter, C.; Hümmer, J. L.; Distel, L. V. R.; Meyer, K.; Hock, R.; Kryschi, C. ACS Appl. Mater. Interfaces 2018, 10, 17071. doi: 10.1021/acsami.8b03660  doi: 10.1021/acsami.8b03660

    105. [105]

      Klein, S.; Smuda, M.; Harreiß, C.; Menter, C.; Distel, L. V. R.; Kryschi, C. ACS Appl. Mater. Interfaces 2019, 11, 39613. doi: 10.1021/acsami.9b13877  doi: 10.1021/acsami.9b13877

    106. [106]

      Cui, J. B.; Jiang, R.; Guo, C.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. J. Am. Chem. Soc. 2018, 140, 5890. doi: 10.1021/jacs.8b00368  doi: 10.1021/jacs.8b00368

    107. [107]

      Huang, Q.; Zhang, S. H.; Zhang, H.; Han, Y. B.; Liu, H. H.; Ren, F.; Sun, Q.; Li, Z.; Gao, M. Y. ACS Nano 2019, 13, 1342. doi: 10.1021/acsnano.8b06795  doi: 10.1021/acsnano.8b06795

    108. [108]

      Li, S. N.; Zhang, L. Y.; Chen, X. J.; Wang, T. T.; Zhao, Y.; Li, L.; Wang, C. G. ACS Appl. Mater. Interfaces 2018, 10, 24137. doi: 10.1021/acsami.8b06527  doi: 10.1021/acsami.8b06527

    109. [109]

      Chen, Y. W.; Su, Y. L.; Hu, S. H.; Chen, S. Y. Adv. Drug Delivery Rev. 2016, 105, 190. doi: 10.1016/j.addr.2016.05.022  doi: 10.1016/j.addr.2016.05.022

    110. [110]

      Younis, M. R.; Wang, C.; An, R. B.; Wang, S. J.; Younis, M. A.; Li, Z. Q.; Wang, Y.; Ihsan, A.; Ye, D. J.; Xia, X. H. ACS Nano 2019, 13, 2544. doi: 10.1021/acsnano.8b09552  doi: 10.1021/acsnano.8b09552

    111. [111]

      Tang, W. T.; Dong, Z. L.; Zhang, R.; Yi, X.; Yang, K.; Jin, M. L.; Yuan, C.; Xiao, Z. D.; Liu, Z.; Cheng, L. ACS Nano 2019, 13, 284. doi: 10.1021/acsnano.8b05982  doi: 10.1021/acsnano.8b05982

    112. [112]

      Liu, C. H.; Dong, H. F.; Wu, N. Q.; Cao, Y.; Zhang, X. J. ACS Appl. Mater. Interfaces 2018, 10, 6991. doi: 10.1021/acsami.8b00112  doi: 10.1021/acsami.8b00112

    113. [113]

      Chang, Y.; Cheng, Y.; Feng, Y. L.; Jian, H.; Wang, L.; Ma, X. M.; Li, X.; Zhang, H. Y. Nano Lett. 2018, 18, 886. doi: 10.1021/acs.nanolett.7b04162  doi: 10.1021/acs.nanolett.7b04162

    114. [114]

      Wang, L.; Chang, Y.; Feng, Y. L.; Li, X.; Cheng, Y.; Jian, H.; Ma, X. M.; Zheng, R. X.; Wu, X. Q.; Xu, K. Q.; Zhang, H. Y. Nano Lett. 2019, 19, 6800. doi: 10.1021/acs.nanolett.9b01869  doi: 10.1021/acs.nanolett.9b01869

    115. [115]

      Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanomedicine, 2011, 6 (4), 715. doi: 10.2217/nnm.11.19  doi: 10.2217/nnm.11.19

    116. [116]

      Fang, R. H.; Hu, C. M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O'Connor, D. E.; Zhang, L. F. Nano Lett. 2014, 14 (4), 2181. doi: 10.1021/nl500618u  doi: 10.1021/nl500618u

    117. [117]

      Toy, R.; Roy, K. Bioeng. Transl. Med. 2016, 1, 47. doi: 10.1002/btm2.10005  doi: 10.1002/btm2.10005

    118. [118]

      Yang, R.; Xu, J.; Xu, L. G.; Sun, X. Q.; Chen, Q.; Zhao, Y. H.; Peng, R.; Liu, Z. ACS Nano 2018, 12, 5121. doi: 10.1021/acsnano.7b09041  doi: 10.1021/acsnano.7b09041

    119. [119]

      Zhang, Z. Q.; Kim, Y. M.; Song, S. C. ACS Appl. Mater. Interfaces 2019, 11, 34634. doi: 10.1021/acsami.9b10182  doi: 10.1021/acsami.9b10182

    120. [120]

      Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R. Goodman, A. L. Nature 2019, 570, 462. doi: 10.1038/s41586-019-1291-3  doi: 10.1038/s41586-019-1291-3

    121. [121]

      Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P.; et al. Proc. Natl. Acad. Sci. 2017, 114 (15), E3110. doi: 10.1073/pnas.1619302114  doi: 10.1073/pnas.1619302114

    122. [122]

      Wang, X. D.; Guo, L. R.; Zhang, S. H.; Chen, Y.; Chen, Y. T.; Zheng, B. B.; Sun, J. W.; Qian, Y. Y.; Chen, Y. X.; Yan, B. F.; et al. ACS Nano 2019, 13, 5720. doi: 10.1021/acsnano.9b01154  doi: 10.1021/acsnano.9b01154

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(14)
  • Abstract views(644)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return