Citation: Tian Li, Xiaojie Hao, Sha Bai, Yufei Zhao, Yu-Fei Song. Controllable Synthesis and Scale-up Production Prospect of Monolayer Layered Double Hydroxide Nanosheets[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191200. doi: 10.3866/PKU.WHXB201912005 shu

Controllable Synthesis and Scale-up Production Prospect of Monolayer Layered Double Hydroxide Nanosheets

  • Corresponding author: Yufei Zhao, songyf@mail.buct.edu.cn Yu-Fei Song, zhaoyufei@mail.buct.edu.cn
  • Received Date: 2 December 2019
    Revised Date: 27 December 2019
    Accepted Date: 30 December 2019
    Available Online: 14 February 2020

    Fund Project: The project was supported by the National Key Basic Research Development Program of China 2017YFB0307303the National Key Basic Research Program of China (973) 2014CB932104the National Natural Science Foundation of China U1707603the National Natural Science Foundation of China 21878008the National Natural Science Foundation of China 21625101the National Natural Science Foundation of China 20190816the National Natural Science Foundation of China 21601195the National Natural Science Foundation of China 21922801the Beijing Natural Science Foundation, China 2182047the Beijing Natural Science Foundation, China 2202036the Central University Fund, China ZY1709

  • As a type of layered material, layered double hydroxides (LDHs) exhibit high development potential and application prospects, and have been used widely in adsorbents, catalysts, ion exchangers, flame retardants, biology, sensing, medicine, and other fields. With the continued development in nanoscience and nanotechnology, it has been established that monolayer LDHs contain an abundance of exposed highly unsaturated coordination sites, and so display unexpected functionality. However, due to the higher charge density of the LDHs layers, the strong interactions between the layers, and the hydroxyl groups on the surface of the layers, the result is a compact stacking of the layers. Consequently, it is still a great challenge to synthesize high-quality monolayer LDHs. Despite various methods of preparing monolayer LDHs having been developed, which can generally be divided into top-down and bottom-up strategies, most of these approaches have used organic solvents, which take a long time to achieve the exfoliation of LDHs, or require special equipment. Furthermore, high costs and the low yields have prevented large-scale production of monolayer LDHs. With the rapid development of the national economy, the industrial preparation of monolayer LDHs has become an inescapable trend. The separate nucleation and ageing method for the preparation of nanostructured LDHs is a feasible method, the key features of which are a very rapid mixing and nucleation process in a colloid mill, followed by a separate ageing process. This method has been successfully applied to a pilot plant in China for the industrial-scale synthesis of LDHs materials. It should be noted that the particle size distribution of LDHs obtained by this method can be well controlled. Moreover, the synthesis operation is simple, and quick (with a short duration of only several minutes). Through new in-depth technology studies on two-dimensional layered materials, large-scale preparation, and industrial application of monolayer LDHs will certainly be increasingly realized, and ultimately transformed into economic benefits. In this review, we summarize the synthesis method of monolayer LDHs, describe the necessary characterization technologies that have been used to study monolayers LDHs nanosheets, such as X-ray diffraction, transmission electron microscopy, and atomic force microscopy. Then we discuss the applications in various fields, such as photocatalysis, electrocatalysis, batteries, supercapacitors, membrane materials, and biomedical fields. We further discuss the recent breakthroughs in the synthesis of monolayer and ultrathin LDHs and the advance of production scale-up of LDHs. Finally, the performance of monolayer/ultrathin LDHs is summarized to provide a basis for the ensuing design of high-performance monolayer LDHs.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Wang, N.; Yang, G.; Wang, H. X.; Yan, C. Z.; Sun, R.; Wong, C. P. Mater. Today 2019, 27, 33. doi: 10.1016/j.mattod.2018.10.039  doi: 10.1016/j.mattod.2018.10.039

    3. [3]

      Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nat. Rev. Mater. 2017, 2 (8), 17033. doi: 10.1038/natrevmats.2017.33  doi: 10.1038/natrevmats.2017.33

    4. [4]

      Zhao, H. X.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M.; Wang, H. RSC Adv. 2014, 4 (2), 624. doi: 10.1039/c3ra45776a  doi: 10.1039/c3ra45776a

    5. [5]

      McAteer, D.; Godwin, I. J.; Ling, Z.; Harvey, A.; He, L.; Boland, C. S.; Vega-Mayoral, V.; Szydłowska, B.; Rovetta, A. A.; Backes, C.; et al. Adv. Energy Mater. 2018, 8 (15), 1702965. doi: 10.1002/aenm.201702965  doi: 10.1002/aenm.201702965

    6. [6]

      Adachi-Pagano, M.; Forano, C.; Besse, J. P. Chem. Commun. 2000, No. 1, 91. doi: 10.1039/A908251D  doi: 10.1039/A908251D

    7. [7]

      Qiu, J. S.; An, Y. L.; Li, Q. X.; Zhou, Y.; Yang, Q. Acta Phys. -Chim. Sin. 2004, 20, 260.  doi: 10.3866/PKU.WHXB201608233

    8. [8]

      Mai, L. Q.; Yang, S.; Han, C. H.; Xu, L.; Xu, X.; Pi, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1551.  doi: 10.3866/PKU.WHXB20110710

    9. [9]

      Liu, Z. N.; Xu, K. L.; Sun, H.; Yin, S. Y. Small 2015, 11 (18), 2182. doi: 10.1002/smll.201402222  doi: 10.1002/smll.201402222

    10. [10]

      Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019, 4 (8), 690. doi: 10.1038/s41560-019-0431-1  doi: 10.1038/s41560-019-0431-1

    11. [11]

      Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X.; et al. Adv. Mater. 2019, 31 (28), e1807576. doi: 10.1002/adma.201807576  doi: 10.1002/adma.201807576

    12. [12]

      Shi, L. R.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Priydarshi, M. K.; Zhang, Y. F.; Manivannan, A.; Liu, Z. F. Small 2015, 11 (47), 6302. doi: 10.1002/smll.201502013  doi: 10.1002/smll.201502013

    13. [13]

      Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. C. Nano Lett. 2009, 9 (4), 1472. doi: 10.1021/nl8033637  doi: 10.1021/nl8033637

    14. [14]

      Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Nano Lett. 2009, 9 (9), 3318. doi: 10.1021/nl901596m  doi: 10.1021/nl901596m

    15. [15]

      Wu, X. W.; Li, H. P.; Song, S.; Zhang, R. J.; Hou, W. G. Int. J. Pharm. 2013, 454 (1), 453. doi: 10.1016/j.ijpharm.2013.06.043  doi: 10.1016/j.ijpharm.2013.06.043

    16. [16]

      Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Adv. Funct. Mater. 2012, 22 (4), 675. doi: 10.1002/adfm.201102222  doi: 10.1002/adfm.201102222

    17. [17]

      Khan, A. I.; Ragavan, A.; Fong, B.; Markland, C.; O'Brien, M.; Dunbar, T. G.; Williams, G. R.; O'Hare, D. Ind. Eng. Chem. Res. 2009, 48 (23), 10196. doi: 10.1021/ie9012612  doi: 10.1021/ie9012612

    18. [18]

      Kim, S. J. Polym. Sci., Part B: Polym. Phys. 2003, 41 (9), 936. doi: 10.1002/polb.10453  doi: 10.1002/polb.10453

    19. [19]

      Lin, Y. J.; Li, D. Q.; Evans, D. G.; Duan, X. Polym. Degrad. Stab. 2005, 88 (2), 286. doi: 10.1016/j.polymdegradstab.2004.11.007  doi: 10.1016/j.polymdegradstab.2004.11.007

    20. [20]

      Guo, S. C.; Li, D. Q.; Zhang, W. F.; Pu, M.; Evans, D. G.; Duan, X. J. Solid State Chem. 2004, 177 (12), 4597. doi: 10.1016/j.jssc.2004.09.028  doi: 10.1016/j.jssc.2004.09.028

    21. [21]

      Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Chem. Mater. 2002, 14 (10), 4286. doi: 10.1021/cm020370h  doi: 10.1021/cm020370h

    22. [22]

      Evans, D. G.; Duan, X. Chem. Commun. 2006, No. 5, 485. doi: 10.1039/b510313b  doi: 10.1039/b510313b

    23. [23]

      Zhao, Y. F.; Li, B.; Wang, Q.; Gao, W.; Wang, C. L. J.; Wei, M.; Evans, D. G.; Duan, X.; O'Hare, D. Chem. Sci. 2014, 5 (3), 951. doi: 10.1039/c3sc52546e  doi: 10.1039/c3sc52546e

    24. [24]

      Zhao, Y. F.; Tan, L.; Xu, Y. Q.; Wang, Z. L.; Song, Y. F.; Wang, J. K.; Hao, X. J. Chin. Sci. Bull. 2018, 63 (34), 3598. doi: 10.1360/n972018-00839  doi: 10.1360/n972018-00839

    25. [25]

      Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112 (7), 4124. doi: 10.1021/cr200434v  doi: 10.1021/cr200434v

    26. [26]

      Yu, J. F.; Wang, Q.; O'Hare, D.; Sun, L. Y. Chem. Soc. Rev. 2017, 46 (19), 5950. doi: 10.1039/c7cs00318h  doi: 10.1039/c7cs00318h

    27. [27]

      Meyn, M.; Beneke, K.; Lagaly, G. Inorg. Chem. 1990, 29 (26), 5201. doi: 10.1021/ic00351a013  doi: 10.1021/ic00351a013

    28. [28]

      Negrete; Letoffe, J. M.; Putaux, J. L.; David, L.; Bourgeat-Lami, E. Langmuir 2004, 20 (5), 1564. doi: 10.1021/la0349267  doi: 10.1021/la0349267

    29. [29]

      Okay, O.; Oppermann, W. Macromolecules 2007, 40 (9), 3378. doi: 10.1021/ma062929v  doi: 10.1021/ma062929v

    30. [30]

      Jobbágy, M.; Iyi, N. J. Phys. Chem. C 2010, 114 (42), 18153. doi: 10.1021/jp1078778  doi: 10.1021/jp1078778

    31. [31]

      Klebow, B.; Meleshyn, A. Langmuir 2011, 27 (21), 12968. doi: 10.1021/la202493z  doi: 10.1021/la202493z

    32. [32]

      O'Leary, S.; O'Hare, D.; Seeley, G. Chem. Commun. 2002, No. 14, 1506. doi: 10.1039/b204213d  doi: 10.1039/b204213d

    33. [33]

      Jobbágy, M.; Regazzoni, A. E. J. Colloid Interface Sci. 2004, 275 (1), 345. doi: 10.1016/j.jcis.2004.01.082  doi: 10.1016/j.jcis.2004.01.082

    34. [34]

      Naik, V. V.; Ramesh, T. N.; Vasudevan, S. J. Phys. Chem. Lett. 2011, 2 (10), 1193. doi: 10.1021/jz2004655  doi: 10.1021/jz2004655

    35. [35]

      Naik, V. V.; Vasudevan, S. Langmuir 2011, 27 (21), 13276. doi: 10.1021/la202876g  doi: 10.1021/la202876g

    36. [36]

      Hibino, T.; Jones, W. J. Mater. Chem. 2001, 11 (5), 1321. doi: 10.1039/b101135i  doi: 10.1039/b101135i

    37. [37]

      Li, L.; Ma, R. Z.; Ebina, Y.; Iyi, N.; Sasaki, T. Chem. Mater. 2005, 17 (17), 4386. doi: 10.1021/cm0510460  doi: 10.1021/cm0510460

    38. [38]

      Liu, Z. P.; Ma, R. Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2006, 128 (14), 4872. doi: 10.1021/ja0584471  doi: 10.1021/ja0584471

    39. [39]

      Song, F.; Hu, X. L. Nat. Commun. 2014, 5, 4477. doi: 10.1038/ncomms5477  doi: 10.1038/ncomms5477

    40. [40]

      Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y.; et al. Nat. Commun. 2016, 7, 11981. doi: 10.1038/ncomms11981  doi: 10.1038/ncomms11981

    41. [41]

      Wu, Q. L.; Olafsen, A.; Vistad, Ø. B.; Roots, J.; Norby, P. J. Mater. Chem. 2005, 15 (44), 4695. doi: 10.1039/b511184f  doi: 10.1039/b511184f

    42. [42]

      Wei, Y.; Li, F. C.; Liu, L. RSC Adv. 2014, 4 (35), 18044. doi: 10.1039/c3ra46995f  doi: 10.1039/c3ra46995f

    43. [43]

      Chen, B.; Zhang, Z.; Kim, S.; Lee, S.; Lee, J.; Kim, W.; Yong, K. ACS Appl. Mater. Interfaces 2018, 10 (51), 44518. doi: 10.1021/acsami.8b16962  doi: 10.1021/acsami.8b16962

    44. [44]

      Zhang, Z. N.; Min, L. F.; Chen, P.; Zhang, W.; Wang, Y. X. Mater. Lett. 2017, 195, 198. doi: 10.1016/j.matlet.2017.02.088  doi: 10.1016/j.matlet.2017.02.088

    45. [45]

      Wang, Q.; O'Hare, D. Chem. Commun. 2013, 49 (56), 6301. doi: 10.1039/c3cc42918k  doi: 10.1039/c3cc42918k

    46. [46]

      Yu, J. F.; Ruengkajorn, K.; Crivoi, D. G.; Chen, C. P.; Buffet, J. C.; O'Hare, D. Nat. Commun. 2019, 10, 2398. doi: 10.1038/s41467-019-10362-2  doi: 10.1038/s41467-019-10362-2

    47. [47]

      Liu, R.; Wang, Y. Y.; Liu, D. D.; Zou, Y. Q.; Wang, S. Y. Adv. Mater. 2017, 29 (30), 1701546. doi: 10.1002/adma.201701546  doi: 10.1002/adma.201701546

    48. [48]

      Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Angew. Chem. Int. Ed. 2017, 56 (21), 5867. doi: 10.1002/anie.201701477  doi: 10.1002/anie.201701477

    49. [49]

      Hu, G.; Wang, N.; O'Hare, D.; Davis, J. Chem. Commun. 2006, No. 3, 287. doi: 10.1039/b514368c  doi: 10.1039/b514368c

    50. [50]

      Zhao, Y. F.; Wang, Q.; Bian, T.; Yu, H. J.; Fan, H.; Zhou, C.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Nanoscale 2015, 7 (16), 7168. doi: 10.1039/c5nr01320h  doi: 10.1039/c5nr01320h

    51. [51]

      Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Adv. Energy Mater. 2016, 6 (10), 1502585. doi: 10.1002/aenm.201502585  doi: 10.1002/aenm.201502585

    52. [52]

      Yu, J. F.; Martin, B. R.; Clearfield, A.; Luo, Z. P.; Sun, L. Y. Nanoscale 2015, 7 (21), 9448. doi: 10.1039/c5nr01077b  doi: 10.1039/c5nr01077b

    53. [53]

      Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H.; et al. Adv. Energy Mater. 2018, 8 (18), 1703585. doi: 10.1002/aenm.201703585  doi: 10.1002/aenm.201703585

    54. [54]

      Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Adv. Energy Mater. 2019, 9 (24), 1900881. doi: 10.1002/aenm.201900881  doi: 10.1002/aenm.201900881

    55. [55]

      Tan, L.; Xu, S. M.; Wang, Z. L.; Xu, Y. Q.; Wang, X.; Hao, X. J.; Bai, S.; Ning, C. J.; Wang, Y.; Zhang, W. K.; et al. Angew. Chem. Int. Ed. 2019, 58 (34), 11860. doi: 10.1002/anie.201904246  doi: 10.1002/anie.201904246

    56. [56]

      Li, H. Q.; Tran, T. N.; Lee, B. J.; Zhang, C. F.; Park, J. D.; Kang, T. H.; Yu, J. S. ACS Appl. Mater. Interfaces 2017, 9 (24), 20294. doi: 10.1021/acsami.7b02912  doi: 10.1021/acsami.7b02912

    57. [57]

      Yan, Y. X.; Liu, Q.; Wang, J.; Wei, J. B.; Gao, Z.; Mann, T.; Li, Z. S.; He, Y.; Zhang, M. L.; Liu, L. H. J. Colloid Interface Sci. 2012, 371 (1), 15. doi: 10.1016/j.jcis.2011.12.075  doi: 10.1016/j.jcis.2011.12.075

    58. [58]

      Zhang, Y. P.; Li, H. P.; Du, N.; Zhang, R. J.; Hou, W. G. Colloids Surface A 2016, 501, 49. doi: 10.1016/j.colsurfa.2016.04.046  doi: 10.1016/j.colsurfa.2016.04.046

    59. [59]

      Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Adv. Mater. 2017, 29 (42), 1703828. doi: 10.1002/adma.201703828  doi: 10.1002/adma.201703828

    60. [60]

      Song, Y. F.; Bai, S.; Zhao, Y. F.; Li, T. Scale-up Production of Monolayer Layered Double Hydroxide Nanosheets. China Patent ZL202010089388.2.

    61. [61]

      Song, J. Q.; Xu, X. Y.; Lin, Y. J.; Li, D. Q.; Duan, X. Synthesis of Nano-layered Composite Metal Hydroxide. China Patent ZL200910084976.0, 2010-12-08.

    62. [62]

      http://www.gzs.buct.edu.cn/kycg/yyyjcg/85007.htm.

    63. [63]

      Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Adv. Mater. 2017, 29 (48), 1606459. doi: 10.1002/adma.201606459  doi: 10.1002/adma.201606459

    64. [64]

      Wang, Z. L.; Xu, S. M.; Xu, Y. Q.; Tan, L.; Wang, X.; Zhao, Y. F.; Duan, H. H.; Song, Y. F. Chem. Sci. 2019, 10 (2), 378. doi: 10.1039/c8sc04480e  doi: 10.1039/c8sc04480e

    65. [65]

      Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Adv. Mater. 2015, 27 (47), 7824. doi: 10.1002/adma.201503730  doi: 10.1002/adma.201503730

    66. [66]

      Chen, S. C.; Wang, H.; Kang, Z. X.; Jin, S.; Zhang, X. D.; Zheng, X. S.; Qi, Z. M.; Zhu, J. F.; Pan, B. C.; Xie, Y. Nat. Commun. 2019, 10, 788. doi: 10.1038/s41467-019-08697-x  doi: 10.1038/s41467-019-08697-x

    67. [67]

      Huo, W. C.; Cao, T.; Liu, X. Y.; Xu, W. N.; Dong, B. Q.; Zhang, Y. X.; Dong, F. Green Energy Environ. 2019, 4 (3), 270. doi: 10.1016/j.gee.2018.11.001  doi: 10.1016/j.gee.2018.11.001

    68. [68]

      Xiong, P.; Zhang, X. Y.; Wan, H.; Wang, S. J.; Zhao, Y. F.; Zhang, J. Q.; Zhou, D.; Gao, W. C.; Ma, R. Z.; Sasaki, T.; et al. Nano Lett. 2019, 19 (7), 4518. doi: 10.1021/acs.nanolett.9b01329  doi: 10.1021/acs.nanolett.9b01329

    69. [69]

      Li, Z. H.; Liu, K.; Fan, K.; Yang, Y. S.; Shao, M. F.; Wei, M.; Duan, X. Angew. Chem. Int. Ed. 2019, 58 (12), 3962. doi: 10.1002/anie.201814705  doi: 10.1002/anie.201814705

    70. [70]

      Werner, S.; Lau, V. W. h.; Hug, S.; Duppel, V.; Clausen-Schaumann, H.; Lotsch, B. V. Langmuir 2013, 29 (29), 9199. doi: 10.1021/la400846w  doi: 10.1021/la400846w

    71. [71]

      Peng, L. Q.; Mei, X.; He, J.; Xu, J. K.; Zhang, W. K.; Liang, R. Z.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2018, 30 (16), 1707389. doi: 10.1002/adma.201707389  doi: 10.1002/adma.201707389

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    10. [10]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    11. [11]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(71)
  • Abstract views(730)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return